File size: 1,650 Bytes
2ac90ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# Partly revised by YZ @UCL&Moorfields
# --------------------------------------------------------

from functools import partial

import torch
import torch.nn as nn

import timm.models.vision_transformer


class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
    """ Vision Transformer with support for global average pooling
    """
    def __init__(self, global_pool=False, **kwargs):
        super(VisionTransformer, self).__init__(**kwargs)

        self.global_pool = global_pool
        if self.global_pool:
            norm_layer = kwargs['norm_layer']
            embed_dim = kwargs['embed_dim']
            self.fc_norm = norm_layer(embed_dim)

            del self.norm  # remove the original norm

    def forward_features(self, x):
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + self.pos_embed
        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)

        if self.global_pool:
            x = x[:, 1:, :].mean(dim=1)  # global pool without cls token
            outcome = self.fc_norm(x)
        else:
            x = self.norm(x)
            outcome = x[:, 0]

        return outcome


def vit_large_patch16(**kwargs):
    model = VisionTransformer(
        img_size=224,patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    return model