# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # Partly revised by YZ @UCL&Moorfields # -------------------------------------------------------- import os from torchvision import datasets, transforms from timm.data import create_transform from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD def build_dataset(is_train, args): transform = build_transform(is_train, args) root = os.path.join(args.data_path, is_train) dataset = datasets.ImageFolder(root, transform=transform) return dataset def build_transform(is_train, args): mean = IMAGENET_DEFAULT_MEAN std = IMAGENET_DEFAULT_STD # train transform if is_train=='train': # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=args.input_size, is_training=True, color_jitter=args.color_jitter, auto_augment=args.aa, interpolation='bicubic', re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, mean=mean, std=std, ) return transform # eval transform t = [] if args.input_size <= 224: crop_pct = 224 / 256 else: crop_pct = 1.0 size = int(args.input_size / crop_pct) t.append( transforms.Resize(size, interpolation=transforms.InterpolationMode.BICUBIC), ) t.append(transforms.CenterCrop(args.input_size)) t.append(transforms.ToTensor()) t.append(transforms.Normalize(mean, std)) return transforms.Compose(t)