# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # Partly revised by YZ @UCL&Moorfields # -------------------------------------------------------- from functools import partial import torch import torch.nn as nn import timm.models.vision_transformer class VisionTransformer(timm.models.vision_transformer.VisionTransformer): """ Vision Transformer with support for global average pooling """ def __init__(self, global_pool=False, **kwargs): super(VisionTransformer, self).__init__(**kwargs) self.global_pool = global_pool if self.global_pool: norm_layer = kwargs['norm_layer'] embed_dim = kwargs['embed_dim'] self.fc_norm = norm_layer(embed_dim) del self.norm # remove the original norm def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) if self.global_pool: x = x[:, 1:, :].mean(dim=1) # global pool without cls token outcome = self.fc_norm(x) else: x = self.norm(x) outcome = x[:, 0] return outcome def vit_large_patch16(**kwargs): model = VisionTransformer( img_size=224,patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model