File size: 32,916 Bytes
4d32fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import warnings
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import numpy as np

import torch
from torch.utils.data.dataloader import default_collate
from packaging import version
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer

from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    deprecate,
    is_accelerate_available,
    is_accelerate_version,
    logging,
    randn_tensor,
    replace_example_docstring,
)
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker

from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg, StableDiffusionPipeline
from .modeling_cpmbee import CpmBeeModel
from .tokenization_viscpmbee import VisCpmBeeTokenizer

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
    items = []
    if isinstance(orig_items[0][key], list):
        assert isinstance(orig_items[0][key][0], torch.Tensor)
        for it in orig_items:
            for tr in it[key]:
                items.append({key: tr})
    else:
        assert isinstance(orig_items[0][key], torch.Tensor)
        items = orig_items

    batch_size = len(items)
    shape = items[0][key].shape
    dim = len(shape)
    assert dim <= 3
    if max_length is None:
        max_length = 0
    max_length = max(max_length, max(item[key].shape[-1] for item in items))
    min_length = min(item[key].shape[-1] for item in items)
    dtype = items[0][key].dtype

    if dim == 1:
        return torch.cat([item[key] for item in items], dim=0)
    elif dim == 2:
        if max_length == min_length:
            return torch.cat([item[key] for item in items], dim=0)
        tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
    else:
        tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value

    for i, item in enumerate(items):
        if dim == 2:
            if padding_side == "left":
                tensor[i, -len(item[key][0]):] = item[key][0].clone()
            else:
                tensor[i, : len(item[key][0])] = item[key][0].clone()
        elif dim == 3:
            if padding_side == "left":
                tensor[i, -len(item[key][0]):, :] = item[key][0].clone()
            else:
                tensor[i, : len(item[key][0]), :] = item[key][0].clone()

    return tensor


class CPMBeeCollater:
    """
    针对 cpmbee 输入数据 collate, 对应 cpm-live 的 _MixedDatasetBatchPacker
    目前利用 torch 的原生 Dataloader 不太适合改造 in-context-learning
    并且原来实现为了最大化提高有效 token 比比例, 会有一个 best_fit 操作, 这个目前也不支持
    todo: 重写一下 Dataloader or BatchPacker
    """

    def __init__(self, tokenizer: VisCpmBeeTokenizer, max_len):
        self.tokenizer = tokenizer
        self._max_length = max_len
        self.pad_keys = ['input_ids', 'input_id_subs', 'context', 'segment_ids', 'segment_rel_offset',
                         'segment_rel', 'sample_ids', 'num_segments']

    def __call__(self, batch):
        batch_size = len(batch)

        tgt = np.full((batch_size, self._max_length), -100, dtype=np.int32)
        # 目前没有 best_fit, span 为全 0
        span = np.zeros((batch_size, self._max_length), dtype=np.int32)
        length = np.zeros((batch_size,), dtype=np.int32)

        batch_ext_table_map: Dict[Tuple[int, int], int] = {}
        batch_ext_table_ids: List[int] = []
        batch_ext_table_sub: List[int] = []
        raw_data_list: List[Any] = []

        for i in range(batch_size):
            instance_length = batch[i]['input_ids'][0].shape[0]
            length[i] = instance_length
            raw_data_list.extend(batch[i]['raw_data'])

            for j in range(instance_length):
                idx, idx_sub = batch[i]['input_ids'][0, j], batch[i]['input_id_subs'][0, j]
                tgt_idx = idx
                if idx_sub > 0:
                    # need to be in ext table
                    if (idx, idx_sub) not in batch_ext_table_map:
                        batch_ext_table_map[(idx, idx_sub)] = len(batch_ext_table_map)
                        batch_ext_table_ids.append(idx)
                        batch_ext_table_sub.append(idx_sub)
                    tgt_idx = batch_ext_table_map[(idx, idx_sub)] + self.tokenizer.vocab_size
                if j > 1 and batch[i]['context'][0, j - 1] == 0:
                    if idx != self.tokenizer.bos_id:
                        tgt[i, j - 1] = tgt_idx
                    else:
                        tgt[i, j - 1] = self.tokenizer.eos_id
            if batch[i]['context'][0, instance_length - 1] == 0:
                tgt[i, instance_length - 1] = self.tokenizer.eos_id

        if len(batch_ext_table_map) == 0:
            # placeholder
            batch_ext_table_ids.append(0)
            batch_ext_table_sub.append(1)

        # image
        if 'pixel_values' in batch[0]:
            data = {'pixel_values': default_collate([i['pixel_values'] for i in batch])}
        else:
            data = {}

        # image_bound
        if 'image_bound' in batch[0]:
            data['image_bound'] = default_collate([i['image_bound'] for i in batch])

        # bee inp
        for key in self.pad_keys:
            data[key] = pad(batch, key, max_length=self._max_length, padding_value=0, padding_side='right')

        data['context'] = data['context'] > 0
        data['length'] = torch.from_numpy(length)
        data['span'] = torch.from_numpy(span)
        data['target'] = torch.from_numpy(tgt)
        data['ext_table_ids'] = torch.from_numpy(np.array(batch_ext_table_ids))
        data['ext_table_sub'] = torch.from_numpy(np.array(batch_ext_table_sub))
        data['raw_data'] = raw_data_list

        return data


class VisCPMPaintBeePipeline(StableDiffusionPipeline):
    _optional_components = ["safety_checker", "feature_extractor"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CpmBeeModel,
        tokenizer: VisCpmBeeTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        requires_safety_checker: bool = True,
    ):
        super().__init__(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            requires_safety_checker=requires_safety_checker
        )

    def build_input(
        self,
        prompt: str,
        negative_prompt: Optional[str] = None,
        image_size: int = 512
    ):
        data_input = {'caption': prompt, 'objects': ''}
        (
            input_ids,
            input_id_subs,
            context,
            segment_ids,
            segment_rel,
            n_segments,
            table_states,
            image_bound
        ) = self.tokenizer.convert_data_to_id(data=data_input, shuffle_answer=False, max_depth=8)
        sample_ids = np.zeros(input_ids.shape, dtype=np.int32)
        segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32)
        num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32)
        data = {
            'pixel_values': torch.zeros(3, image_size, image_size).unsqueeze(0),
            'input_ids': torch.from_numpy(input_ids).unsqueeze(0),
            'input_id_subs': torch.from_numpy(input_id_subs).unsqueeze(0),
            'context': torch.from_numpy(context).unsqueeze(0),
            'segment_ids': torch.from_numpy(segment_ids).unsqueeze(0),
            'segment_rel_offset': torch.from_numpy(segment_rel_offset).unsqueeze(0),
            'segment_rel': torch.from_numpy(segment_rel).unsqueeze(0),
            'sample_ids': torch.from_numpy(sample_ids).unsqueeze(0),
            'num_segments': torch.from_numpy(num_segments).unsqueeze(0),
            'image_bound': image_bound,
            'raw_data': prompt,
        }

        uncond_data_input = {
            'caption': "" if negative_prompt is None else negative_prompt,
            'objects': ''
        }
        (
            input_ids,
            input_id_subs,
            context,
            segment_ids,
            segment_rel,
            n_segments,
            table_states,
            image_bound
        ) = self.tokenizer.convert_data_to_id(data=uncond_data_input, shuffle_answer=False, max_depth=8)
        sample_ids = np.zeros(input_ids.shape, dtype=np.int32)
        segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32)
        num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32)
        uncond_data = {
            'pixel_values': torch.zeros(3, image_size, image_size).unsqueeze(0),
            'input_ids': torch.from_numpy(input_ids).unsqueeze(0),
            'input_id_subs': torch.from_numpy(input_id_subs).unsqueeze(0),
            'context': torch.from_numpy(context).unsqueeze(0),
            'segment_ids': torch.from_numpy(segment_ids).unsqueeze(0),
            'segment_rel_offset': torch.from_numpy(segment_rel_offset).unsqueeze(0),
            'segment_rel': torch.from_numpy(segment_rel).unsqueeze(0),
            'sample_ids': torch.from_numpy(sample_ids).unsqueeze(0),
            'num_segments': torch.from_numpy(num_segments).unsqueeze(0),
            'image_bound': image_bound,
            'raw_data': "" if negative_prompt is None else negative_prompt,
        }
        packer = CPMBeeCollater(
            tokenizer=self.tokenizer,
            max_len=max(data['input_ids'].size(-1), uncond_data['input_ids'].size(-1))
        )
        data = packer([data])
        uncond_data = packer([uncond_data])
        return data, uncond_data

    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
             prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale
            
        data, uncond_data = self.build_input(prompt, negative_prompt, image_size=512)
        for key, value in data.items():
            if isinstance(value, torch.Tensor):
                data[key] = value.to(self.device)
        for key, value in uncond_data.items():
            if isinstance(value, torch.Tensor):
                uncond_data[key] = value.to(self.device)

        batch, seq_length = data['input_ids'].size()
        dtype, device = data['input_ids'].dtype, data['input_ids'].device
        data['position'] = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)

        batch, seq_length = uncond_data['input_ids'].size()
        dtype, device = uncond_data['input_ids'].dtype, uncond_data['input_ids'].device
        uncond_data['position'] = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)

        with torch.no_grad():
            # llm_hidden_state = self.text_encoder.llm.input_embedding(data['input_ids'], data['input_id_subs'])
            _, hidden_states = self.text_encoder(
                input_ids=data['input_ids'],
                input_id_sub=data['input_id_subs'],
                position=data['position'],
                #length=data['length'],
                context=data['context'],
                sample_ids=data['sample_ids'],
                num_segments=data['num_segments'],
                segment=data['segment_ids'],
                segment_rel_offset=data['segment_rel_offset'],
                segment_rel=data['segment_rel'],
                #span=data['span'],
                #ext_table_ids=data['ext_table_ids'],
                #ext_table_sub=data['ext_table_sub'],
                #hidden_states=llm_hidden_state
            )

        with torch.no_grad():
            # uncond_llm_hidden_state = self.text_encoder.llm.input_embedding(uncond_data['input_ids'], uncond_data['input_id_subs'])
            _, uncond_hidden_states = self.text_encoder(
                input_ids=uncond_data['input_ids'],
                input_id_sub=uncond_data['input_id_subs'],
                position=uncond_data['position'],
                #length=uncond_data['length'],
                context=uncond_data['context'],
                sample_ids=uncond_data['sample_ids'],
                num_segments=uncond_data['num_segments'],
                segment=uncond_data['segment_ids'],
                segment_rel_offset=uncond_data['segment_rel_offset'],
                segment_rel=uncond_data['segment_rel'],
                #span=uncond_data['span'],
                #ext_table_ids=uncond_data['ext_table_ids'],
                #ext_table_sub=uncond_data['ext_table_sub'],
                #hidden_states=uncond_llm_hidden_state
            )

        text_hidden_states, uncond_text_hidden_states = hidden_states, uncond_hidden_states
        if self.text_encoder.trans_block is not None:
            text_hidden_states = self.text_encoder.trans_block(text_hidden_states)
            uncond_text_hidden_states = self.text_encoder.trans_block(uncond_text_hidden_states)
        bs_embed, seq_len, _ = text_hidden_states.shape
        text_hidden_states = text_hidden_states.repeat(1, num_images_per_prompt, 1)
        text_hidden_states = text_hidden_states.view(bs_embed * num_images_per_prompt, seq_len, -1)

        bs_embed, seq_len, _ = uncond_text_hidden_states.shape
        uncond_text_hidden_states = uncond_text_hidden_states.repeat(1, num_images_per_prompt, 1)
        uncond_text_hidden_states = uncond_text_hidden_states.view(bs_embed * num_images_per_prompt, seq_len, -1)

        prompt_embeds = torch.cat([uncond_text_hidden_states, text_hidden_states])
        return prompt_embeds

        # if prompt is not None and isinstance(prompt, str):
        #     batch_size = 1
        # elif prompt is not None and isinstance(prompt, list):
        #     batch_size = len(prompt)
        # else:
        #     batch_size = prompt_embeds.shape[0]

        # if prompt_embeds is None:
        #     # textual inversion: procecss multi-vector tokens if necessary
        #     if isinstance(self, TextualInversionLoaderMixin):
        #         prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

        #     text_inputs = self.tokenizer(
        #         prompt,
        #         padding="max_length",
        #         max_length=self.tokenizer.model_max_length,
        #         truncation=True,
        #         return_tensors="pt",
        #     )
        #     text_input_ids = text_inputs.input_ids
        #     untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

        #     if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
        #         text_input_ids, untruncated_ids
        #     ):
        #         removed_text = self.tokenizer.batch_decode(
        #             untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
        #         )
        #         logger.warning(
        #             "The following part of your input was truncated because CLIP can only handle sequences up to"
        #             f" {self.tokenizer.model_max_length} tokens: {removed_text}"
        #         )

        #     if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
        #         attention_mask = text_inputs.attention_mask.to(device)
        #     else:
        #         attention_mask = None

        #     prompt_embeds = self.text_encoder(
        #         text_input_ids.to(device),
        #         attention_mask=attention_mask,
        #     )
        #     prompt_embeds = prompt_embeds[0]

        # prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        # bs_embed, seq_len, _ = prompt_embeds.shape
        # # duplicate text embeddings for each generation per prompt, using mps friendly method
        # prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        # prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # # get unconditional embeddings for classifier free guidance
        # if do_classifier_free_guidance and negative_prompt_embeds is None:
        #     uncond_tokens: List[str]
        #     if negative_prompt is None:
        #         uncond_tokens = [""] * batch_size
        #     elif prompt is not None and type(prompt) is not type(negative_prompt):
        #         raise TypeError(
        #             f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
        #             f" {type(prompt)}."
        #         )
        #     elif isinstance(negative_prompt, str):
        #         uncond_tokens = [negative_prompt]
        #     elif batch_size != len(negative_prompt):
        #         raise ValueError(
        #             f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
        #             f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
        #             " the batch size of `prompt`."
        #         )
        #     else:
        #         uncond_tokens = negative_prompt

        #     # textual inversion: procecss multi-vector tokens if necessary
        #     if isinstance(self, TextualInversionLoaderMixin):
        #         uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

        #     max_length = prompt_embeds.shape[1]
        #     uncond_input = self.tokenizer(
        #         uncond_tokens,
        #         padding="max_length",
        #         max_length=max_length,
        #         truncation=True,
        #         return_tensors="pt",
        #     )

        #     if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
        #         attention_mask = uncond_input.attention_mask.to(device)
        #     else:
        #         attention_mask = None

        #     negative_prompt_embeds = self.text_encoder(
        #         uncond_input.input_ids.to(device),
        #         attention_mask=attention_mask,
        #     )
        #     negative_prompt_embeds = negative_prompt_embeds[0]

        # if do_classifier_free_guidance:
        #     # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        #     seq_len = negative_prompt_embeds.shape[1]

        #     negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        #     negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        #     negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        #     # For classifier free guidance, we need to do two forward passes.
        #     # Here we concatenate the unconditional and text embeddings into a single batch
        #     # to avoid doing two forward passes
        #     prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        # return prompt_embeds

    def decode_latents(self, latents):
        warnings.warn(
            "The decode_latents method is deprecated and will be removed in a future version. Please"
            " use VaeImageProcessor instead",
            FutureWarning,
        )
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
    ):
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                if do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)