File size: 32,916 Bytes
4d32fc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import warnings
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import numpy as np
import torch
from torch.utils.data.dataloader import default_collate
from packaging import version
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg, StableDiffusionPipeline
from .modeling_cpmbee import CpmBeeModel
from .tokenization_viscpmbee import VisCpmBeeTokenizer
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
items = []
if isinstance(orig_items[0][key], list):
assert isinstance(orig_items[0][key][0], torch.Tensor)
for it in orig_items:
for tr in it[key]:
items.append({key: tr})
else:
assert isinstance(orig_items[0][key], torch.Tensor)
items = orig_items
batch_size = len(items)
shape = items[0][key].shape
dim = len(shape)
assert dim <= 3
if max_length is None:
max_length = 0
max_length = max(max_length, max(item[key].shape[-1] for item in items))
min_length = min(item[key].shape[-1] for item in items)
dtype = items[0][key].dtype
if dim == 1:
return torch.cat([item[key] for item in items], dim=0)
elif dim == 2:
if max_length == min_length:
return torch.cat([item[key] for item in items], dim=0)
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
else:
tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value
for i, item in enumerate(items):
if dim == 2:
if padding_side == "left":
tensor[i, -len(item[key][0]):] = item[key][0].clone()
else:
tensor[i, : len(item[key][0])] = item[key][0].clone()
elif dim == 3:
if padding_side == "left":
tensor[i, -len(item[key][0]):, :] = item[key][0].clone()
else:
tensor[i, : len(item[key][0]), :] = item[key][0].clone()
return tensor
class CPMBeeCollater:
"""
针对 cpmbee 输入数据 collate, 对应 cpm-live 的 _MixedDatasetBatchPacker
目前利用 torch 的原生 Dataloader 不太适合改造 in-context-learning
并且原来实现为了最大化提高有效 token 比比例, 会有一个 best_fit 操作, 这个目前也不支持
todo: 重写一下 Dataloader or BatchPacker
"""
def __init__(self, tokenizer: VisCpmBeeTokenizer, max_len):
self.tokenizer = tokenizer
self._max_length = max_len
self.pad_keys = ['input_ids', 'input_id_subs', 'context', 'segment_ids', 'segment_rel_offset',
'segment_rel', 'sample_ids', 'num_segments']
def __call__(self, batch):
batch_size = len(batch)
tgt = np.full((batch_size, self._max_length), -100, dtype=np.int32)
# 目前没有 best_fit, span 为全 0
span = np.zeros((batch_size, self._max_length), dtype=np.int32)
length = np.zeros((batch_size,), dtype=np.int32)
batch_ext_table_map: Dict[Tuple[int, int], int] = {}
batch_ext_table_ids: List[int] = []
batch_ext_table_sub: List[int] = []
raw_data_list: List[Any] = []
for i in range(batch_size):
instance_length = batch[i]['input_ids'][0].shape[0]
length[i] = instance_length
raw_data_list.extend(batch[i]['raw_data'])
for j in range(instance_length):
idx, idx_sub = batch[i]['input_ids'][0, j], batch[i]['input_id_subs'][0, j]
tgt_idx = idx
if idx_sub > 0:
# need to be in ext table
if (idx, idx_sub) not in batch_ext_table_map:
batch_ext_table_map[(idx, idx_sub)] = len(batch_ext_table_map)
batch_ext_table_ids.append(idx)
batch_ext_table_sub.append(idx_sub)
tgt_idx = batch_ext_table_map[(idx, idx_sub)] + self.tokenizer.vocab_size
if j > 1 and batch[i]['context'][0, j - 1] == 0:
if idx != self.tokenizer.bos_id:
tgt[i, j - 1] = tgt_idx
else:
tgt[i, j - 1] = self.tokenizer.eos_id
if batch[i]['context'][0, instance_length - 1] == 0:
tgt[i, instance_length - 1] = self.tokenizer.eos_id
if len(batch_ext_table_map) == 0:
# placeholder
batch_ext_table_ids.append(0)
batch_ext_table_sub.append(1)
# image
if 'pixel_values' in batch[0]:
data = {'pixel_values': default_collate([i['pixel_values'] for i in batch])}
else:
data = {}
# image_bound
if 'image_bound' in batch[0]:
data['image_bound'] = default_collate([i['image_bound'] for i in batch])
# bee inp
for key in self.pad_keys:
data[key] = pad(batch, key, max_length=self._max_length, padding_value=0, padding_side='right')
data['context'] = data['context'] > 0
data['length'] = torch.from_numpy(length)
data['span'] = torch.from_numpy(span)
data['target'] = torch.from_numpy(tgt)
data['ext_table_ids'] = torch.from_numpy(np.array(batch_ext_table_ids))
data['ext_table_sub'] = torch.from_numpy(np.array(batch_ext_table_sub))
data['raw_data'] = raw_data_list
return data
class VisCPMPaintBeePipeline(StableDiffusionPipeline):
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CpmBeeModel,
tokenizer: VisCpmBeeTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
requires_safety_checker=requires_safety_checker
)
def build_input(
self,
prompt: str,
negative_prompt: Optional[str] = None,
image_size: int = 512
):
data_input = {'caption': prompt, 'objects': ''}
(
input_ids,
input_id_subs,
context,
segment_ids,
segment_rel,
n_segments,
table_states,
image_bound
) = self.tokenizer.convert_data_to_id(data=data_input, shuffle_answer=False, max_depth=8)
sample_ids = np.zeros(input_ids.shape, dtype=np.int32)
segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32)
num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32)
data = {
'pixel_values': torch.zeros(3, image_size, image_size).unsqueeze(0),
'input_ids': torch.from_numpy(input_ids).unsqueeze(0),
'input_id_subs': torch.from_numpy(input_id_subs).unsqueeze(0),
'context': torch.from_numpy(context).unsqueeze(0),
'segment_ids': torch.from_numpy(segment_ids).unsqueeze(0),
'segment_rel_offset': torch.from_numpy(segment_rel_offset).unsqueeze(0),
'segment_rel': torch.from_numpy(segment_rel).unsqueeze(0),
'sample_ids': torch.from_numpy(sample_ids).unsqueeze(0),
'num_segments': torch.from_numpy(num_segments).unsqueeze(0),
'image_bound': image_bound,
'raw_data': prompt,
}
uncond_data_input = {
'caption': "" if negative_prompt is None else negative_prompt,
'objects': ''
}
(
input_ids,
input_id_subs,
context,
segment_ids,
segment_rel,
n_segments,
table_states,
image_bound
) = self.tokenizer.convert_data_to_id(data=uncond_data_input, shuffle_answer=False, max_depth=8)
sample_ids = np.zeros(input_ids.shape, dtype=np.int32)
segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32)
num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32)
uncond_data = {
'pixel_values': torch.zeros(3, image_size, image_size).unsqueeze(0),
'input_ids': torch.from_numpy(input_ids).unsqueeze(0),
'input_id_subs': torch.from_numpy(input_id_subs).unsqueeze(0),
'context': torch.from_numpy(context).unsqueeze(0),
'segment_ids': torch.from_numpy(segment_ids).unsqueeze(0),
'segment_rel_offset': torch.from_numpy(segment_rel_offset).unsqueeze(0),
'segment_rel': torch.from_numpy(segment_rel).unsqueeze(0),
'sample_ids': torch.from_numpy(sample_ids).unsqueeze(0),
'num_segments': torch.from_numpy(num_segments).unsqueeze(0),
'image_bound': image_bound,
'raw_data': "" if negative_prompt is None else negative_prompt,
}
packer = CPMBeeCollater(
tokenizer=self.tokenizer,
max_len=max(data['input_ids'].size(-1), uncond_data['input_ids'].size(-1))
)
data = packer([data])
uncond_data = packer([uncond_data])
return data, uncond_data
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
data, uncond_data = self.build_input(prompt, negative_prompt, image_size=512)
for key, value in data.items():
if isinstance(value, torch.Tensor):
data[key] = value.to(self.device)
for key, value in uncond_data.items():
if isinstance(value, torch.Tensor):
uncond_data[key] = value.to(self.device)
batch, seq_length = data['input_ids'].size()
dtype, device = data['input_ids'].dtype, data['input_ids'].device
data['position'] = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)
batch, seq_length = uncond_data['input_ids'].size()
dtype, device = uncond_data['input_ids'].dtype, uncond_data['input_ids'].device
uncond_data['position'] = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)
with torch.no_grad():
# llm_hidden_state = self.text_encoder.llm.input_embedding(data['input_ids'], data['input_id_subs'])
_, hidden_states = self.text_encoder(
input_ids=data['input_ids'],
input_id_sub=data['input_id_subs'],
position=data['position'],
#length=data['length'],
context=data['context'],
sample_ids=data['sample_ids'],
num_segments=data['num_segments'],
segment=data['segment_ids'],
segment_rel_offset=data['segment_rel_offset'],
segment_rel=data['segment_rel'],
#span=data['span'],
#ext_table_ids=data['ext_table_ids'],
#ext_table_sub=data['ext_table_sub'],
#hidden_states=llm_hidden_state
)
with torch.no_grad():
# uncond_llm_hidden_state = self.text_encoder.llm.input_embedding(uncond_data['input_ids'], uncond_data['input_id_subs'])
_, uncond_hidden_states = self.text_encoder(
input_ids=uncond_data['input_ids'],
input_id_sub=uncond_data['input_id_subs'],
position=uncond_data['position'],
#length=uncond_data['length'],
context=uncond_data['context'],
sample_ids=uncond_data['sample_ids'],
num_segments=uncond_data['num_segments'],
segment=uncond_data['segment_ids'],
segment_rel_offset=uncond_data['segment_rel_offset'],
segment_rel=uncond_data['segment_rel'],
#span=uncond_data['span'],
#ext_table_ids=uncond_data['ext_table_ids'],
#ext_table_sub=uncond_data['ext_table_sub'],
#hidden_states=uncond_llm_hidden_state
)
text_hidden_states, uncond_text_hidden_states = hidden_states, uncond_hidden_states
if self.text_encoder.trans_block is not None:
text_hidden_states = self.text_encoder.trans_block(text_hidden_states)
uncond_text_hidden_states = self.text_encoder.trans_block(uncond_text_hidden_states)
bs_embed, seq_len, _ = text_hidden_states.shape
text_hidden_states = text_hidden_states.repeat(1, num_images_per_prompt, 1)
text_hidden_states = text_hidden_states.view(bs_embed * num_images_per_prompt, seq_len, -1)
bs_embed, seq_len, _ = uncond_text_hidden_states.shape
uncond_text_hidden_states = uncond_text_hidden_states.repeat(1, num_images_per_prompt, 1)
uncond_text_hidden_states = uncond_text_hidden_states.view(bs_embed * num_images_per_prompt, seq_len, -1)
prompt_embeds = torch.cat([uncond_text_hidden_states, text_hidden_states])
return prompt_embeds
# if prompt is not None and isinstance(prompt, str):
# batch_size = 1
# elif prompt is not None and isinstance(prompt, list):
# batch_size = len(prompt)
# else:
# batch_size = prompt_embeds.shape[0]
# if prompt_embeds is None:
# # textual inversion: procecss multi-vector tokens if necessary
# if isinstance(self, TextualInversionLoaderMixin):
# prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
# text_inputs = self.tokenizer(
# prompt,
# padding="max_length",
# max_length=self.tokenizer.model_max_length,
# truncation=True,
# return_tensors="pt",
# )
# text_input_ids = text_inputs.input_ids
# untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
# if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
# text_input_ids, untruncated_ids
# ):
# removed_text = self.tokenizer.batch_decode(
# untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
# )
# logger.warning(
# "The following part of your input was truncated because CLIP can only handle sequences up to"
# f" {self.tokenizer.model_max_length} tokens: {removed_text}"
# )
# if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
# attention_mask = text_inputs.attention_mask.to(device)
# else:
# attention_mask = None
# prompt_embeds = self.text_encoder(
# text_input_ids.to(device),
# attention_mask=attention_mask,
# )
# prompt_embeds = prompt_embeds[0]
# prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
# bs_embed, seq_len, _ = prompt_embeds.shape
# # duplicate text embeddings for each generation per prompt, using mps friendly method
# prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
# prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# # get unconditional embeddings for classifier free guidance
# if do_classifier_free_guidance and negative_prompt_embeds is None:
# uncond_tokens: List[str]
# if negative_prompt is None:
# uncond_tokens = [""] * batch_size
# elif prompt is not None and type(prompt) is not type(negative_prompt):
# raise TypeError(
# f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
# f" {type(prompt)}."
# )
# elif isinstance(negative_prompt, str):
# uncond_tokens = [negative_prompt]
# elif batch_size != len(negative_prompt):
# raise ValueError(
# f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
# f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
# " the batch size of `prompt`."
# )
# else:
# uncond_tokens = negative_prompt
# # textual inversion: procecss multi-vector tokens if necessary
# if isinstance(self, TextualInversionLoaderMixin):
# uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
# max_length = prompt_embeds.shape[1]
# uncond_input = self.tokenizer(
# uncond_tokens,
# padding="max_length",
# max_length=max_length,
# truncation=True,
# return_tensors="pt",
# )
# if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
# attention_mask = uncond_input.attention_mask.to(device)
# else:
# attention_mask = None
# negative_prompt_embeds = self.text_encoder(
# uncond_input.input_ids.to(device),
# attention_mask=attention_mask,
# )
# negative_prompt_embeds = negative_prompt_embeds[0]
# if do_classifier_free_guidance:
# # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
# seq_len = negative_prompt_embeds.shape[1]
# negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
# negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
# negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# # For classifier free guidance, we need to do two forward passes.
# # Here we concatenate the unconditional and text embeddings into a single batch
# # to avoid doing two forward passes
# prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# return prompt_embeds
def decode_latents(self, latents):
warnings.warn(
"The decode_latents method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor instead",
FutureWarning,
)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|