# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import warnings from typing import Any, Callable, Dict, List, Optional, Union, Tuple import numpy as np import torch from torch.utils.data.dataloader import default_collate from packaging import version from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers.configuration_utils import FrozenDict from diffusers.image_processor import VaeImageProcessor from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import ( deprecate, is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from diffusers.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg, StableDiffusionPipeline from .modeling_cpmbee import CpmBeeModel from .tokenization_viscpmbee import VisCpmBeeTokenizer logger = logging.get_logger(__name__) # pylint: disable=invalid-name def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"): items = [] if isinstance(orig_items[0][key], list): assert isinstance(orig_items[0][key][0], torch.Tensor) for it in orig_items: for tr in it[key]: items.append({key: tr}) else: assert isinstance(orig_items[0][key], torch.Tensor) items = orig_items batch_size = len(items) shape = items[0][key].shape dim = len(shape) assert dim <= 3 if max_length is None: max_length = 0 max_length = max(max_length, max(item[key].shape[-1] for item in items)) min_length = min(item[key].shape[-1] for item in items) dtype = items[0][key].dtype if dim == 1: return torch.cat([item[key] for item in items], dim=0) elif dim == 2: if max_length == min_length: return torch.cat([item[key] for item in items], dim=0) tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value else: tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value for i, item in enumerate(items): if dim == 2: if padding_side == "left": tensor[i, -len(item[key][0]):] = item[key][0].clone() else: tensor[i, : len(item[key][0])] = item[key][0].clone() elif dim == 3: if padding_side == "left": tensor[i, -len(item[key][0]):, :] = item[key][0].clone() else: tensor[i, : len(item[key][0]), :] = item[key][0].clone() return tensor class CPMBeeCollater: """ 针对 cpmbee 输入数据 collate, 对应 cpm-live 的 _MixedDatasetBatchPacker 目前利用 torch 的原生 Dataloader 不太适合改造 in-context-learning 并且原来实现为了最大化提高有效 token 比比例, 会有一个 best_fit 操作, 这个目前也不支持 todo: 重写一下 Dataloader or BatchPacker """ def __init__(self, tokenizer: VisCpmBeeTokenizer, max_len): self.tokenizer = tokenizer self._max_length = max_len self.pad_keys = ['input_ids', 'input_id_subs', 'context', 'segment_ids', 'segment_rel_offset', 'segment_rel', 'sample_ids', 'num_segments'] def __call__(self, batch): batch_size = len(batch) tgt = np.full((batch_size, self._max_length), -100, dtype=np.int32) # 目前没有 best_fit, span 为全 0 span = np.zeros((batch_size, self._max_length), dtype=np.int32) length = np.zeros((batch_size,), dtype=np.int32) batch_ext_table_map: Dict[Tuple[int, int], int] = {} batch_ext_table_ids: List[int] = [] batch_ext_table_sub: List[int] = [] raw_data_list: List[Any] = [] for i in range(batch_size): instance_length = batch[i]['input_ids'][0].shape[0] length[i] = instance_length raw_data_list.extend(batch[i]['raw_data']) for j in range(instance_length): idx, idx_sub = batch[i]['input_ids'][0, j], batch[i]['input_id_subs'][0, j] tgt_idx = idx if idx_sub > 0: # need to be in ext table if (idx, idx_sub) not in batch_ext_table_map: batch_ext_table_map[(idx, idx_sub)] = len(batch_ext_table_map) batch_ext_table_ids.append(idx) batch_ext_table_sub.append(idx_sub) tgt_idx = batch_ext_table_map[(idx, idx_sub)] + self.tokenizer.vocab_size if j > 1 and batch[i]['context'][0, j - 1] == 0: if idx != self.tokenizer.bos_id: tgt[i, j - 1] = tgt_idx else: tgt[i, j - 1] = self.tokenizer.eos_id if batch[i]['context'][0, instance_length - 1] == 0: tgt[i, instance_length - 1] = self.tokenizer.eos_id if len(batch_ext_table_map) == 0: # placeholder batch_ext_table_ids.append(0) batch_ext_table_sub.append(1) # image if 'pixel_values' in batch[0]: data = {'pixel_values': default_collate([i['pixel_values'] for i in batch])} else: data = {} # image_bound if 'image_bound' in batch[0]: data['image_bound'] = default_collate([i['image_bound'] for i in batch]) # bee inp for key in self.pad_keys: data[key] = pad(batch, key, max_length=self._max_length, padding_value=0, padding_side='right') data['context'] = data['context'] > 0 data['length'] = torch.from_numpy(length) data['span'] = torch.from_numpy(span) data['target'] = torch.from_numpy(tgt) data['ext_table_ids'] = torch.from_numpy(np.array(batch_ext_table_ids)) data['ext_table_sub'] = torch.from_numpy(np.array(batch_ext_table_sub)) data['raw_data'] = raw_data_list return data class VisCPMPaintBeePipeline(StableDiffusionPipeline): _optional_components = ["safety_checker", "feature_extractor"] def __init__( self, vae: AutoencoderKL, text_encoder: CpmBeeModel, tokenizer: VisCpmBeeTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, requires_safety_checker=requires_safety_checker ) def build_input( self, prompt: str, negative_prompt: Optional[str] = None, image_size: int = 512 ): data_input = {'caption': prompt, 'objects': ''} ( input_ids, input_id_subs, context, segment_ids, segment_rel, n_segments, table_states, image_bound ) = self.tokenizer.convert_data_to_id(data=data_input, shuffle_answer=False, max_depth=8) sample_ids = np.zeros(input_ids.shape, dtype=np.int32) segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32) num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32) data = { 'pixel_values': torch.zeros(3, image_size, image_size).unsqueeze(0), 'input_ids': torch.from_numpy(input_ids).unsqueeze(0), 'input_id_subs': torch.from_numpy(input_id_subs).unsqueeze(0), 'context': torch.from_numpy(context).unsqueeze(0), 'segment_ids': torch.from_numpy(segment_ids).unsqueeze(0), 'segment_rel_offset': torch.from_numpy(segment_rel_offset).unsqueeze(0), 'segment_rel': torch.from_numpy(segment_rel).unsqueeze(0), 'sample_ids': torch.from_numpy(sample_ids).unsqueeze(0), 'num_segments': torch.from_numpy(num_segments).unsqueeze(0), 'image_bound': image_bound, 'raw_data': prompt, } uncond_data_input = { 'caption': "" if negative_prompt is None else negative_prompt, 'objects': '' } ( input_ids, input_id_subs, context, segment_ids, segment_rel, n_segments, table_states, image_bound ) = self.tokenizer.convert_data_to_id(data=uncond_data_input, shuffle_answer=False, max_depth=8) sample_ids = np.zeros(input_ids.shape, dtype=np.int32) segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32) num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32) uncond_data = { 'pixel_values': torch.zeros(3, image_size, image_size).unsqueeze(0), 'input_ids': torch.from_numpy(input_ids).unsqueeze(0), 'input_id_subs': torch.from_numpy(input_id_subs).unsqueeze(0), 'context': torch.from_numpy(context).unsqueeze(0), 'segment_ids': torch.from_numpy(segment_ids).unsqueeze(0), 'segment_rel_offset': torch.from_numpy(segment_rel_offset).unsqueeze(0), 'segment_rel': torch.from_numpy(segment_rel).unsqueeze(0), 'sample_ids': torch.from_numpy(sample_ids).unsqueeze(0), 'num_segments': torch.from_numpy(num_segments).unsqueeze(0), 'image_bound': image_bound, 'raw_data': "" if negative_prompt is None else negative_prompt, } packer = CPMBeeCollater( tokenizer=self.tokenizer, max_len=max(data['input_ids'].size(-1), uncond_data['input_ids'].size(-1)) ) data = packer([data]) uncond_data = packer([uncond_data]) return data, uncond_data def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale data, uncond_data = self.build_input(prompt, negative_prompt, image_size=512) for key, value in data.items(): if isinstance(value, torch.Tensor): data[key] = value.to(self.device) for key, value in uncond_data.items(): if isinstance(value, torch.Tensor): uncond_data[key] = value.to(self.device) batch, seq_length = data['input_ids'].size() dtype, device = data['input_ids'].dtype, data['input_ids'].device data['position'] = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1) batch, seq_length = uncond_data['input_ids'].size() dtype, device = uncond_data['input_ids'].dtype, uncond_data['input_ids'].device uncond_data['position'] = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1) with torch.no_grad(): # llm_hidden_state = self.text_encoder.llm.input_embedding(data['input_ids'], data['input_id_subs']) _, hidden_states = self.text_encoder( input_ids=data['input_ids'], input_id_sub=data['input_id_subs'], position=data['position'], #length=data['length'], context=data['context'], sample_ids=data['sample_ids'], num_segments=data['num_segments'], segment=data['segment_ids'], segment_rel_offset=data['segment_rel_offset'], segment_rel=data['segment_rel'], #span=data['span'], #ext_table_ids=data['ext_table_ids'], #ext_table_sub=data['ext_table_sub'], #hidden_states=llm_hidden_state ) with torch.no_grad(): # uncond_llm_hidden_state = self.text_encoder.llm.input_embedding(uncond_data['input_ids'], uncond_data['input_id_subs']) _, uncond_hidden_states = self.text_encoder( input_ids=uncond_data['input_ids'], input_id_sub=uncond_data['input_id_subs'], position=uncond_data['position'], #length=uncond_data['length'], context=uncond_data['context'], sample_ids=uncond_data['sample_ids'], num_segments=uncond_data['num_segments'], segment=uncond_data['segment_ids'], segment_rel_offset=uncond_data['segment_rel_offset'], segment_rel=uncond_data['segment_rel'], #span=uncond_data['span'], #ext_table_ids=uncond_data['ext_table_ids'], #ext_table_sub=uncond_data['ext_table_sub'], #hidden_states=uncond_llm_hidden_state ) text_hidden_states, uncond_text_hidden_states = hidden_states, uncond_hidden_states if self.text_encoder.trans_block is not None: text_hidden_states = self.text_encoder.trans_block(text_hidden_states) uncond_text_hidden_states = self.text_encoder.trans_block(uncond_text_hidden_states) bs_embed, seq_len, _ = text_hidden_states.shape text_hidden_states = text_hidden_states.repeat(1, num_images_per_prompt, 1) text_hidden_states = text_hidden_states.view(bs_embed * num_images_per_prompt, seq_len, -1) bs_embed, seq_len, _ = uncond_text_hidden_states.shape uncond_text_hidden_states = uncond_text_hidden_states.repeat(1, num_images_per_prompt, 1) uncond_text_hidden_states = uncond_text_hidden_states.view(bs_embed * num_images_per_prompt, seq_len, -1) prompt_embeds = torch.cat([uncond_text_hidden_states, text_hidden_states]) return prompt_embeds # if prompt is not None and isinstance(prompt, str): # batch_size = 1 # elif prompt is not None and isinstance(prompt, list): # batch_size = len(prompt) # else: # batch_size = prompt_embeds.shape[0] # if prompt_embeds is None: # # textual inversion: procecss multi-vector tokens if necessary # if isinstance(self, TextualInversionLoaderMixin): # prompt = self.maybe_convert_prompt(prompt, self.tokenizer) # text_inputs = self.tokenizer( # prompt, # padding="max_length", # max_length=self.tokenizer.model_max_length, # truncation=True, # return_tensors="pt", # ) # text_input_ids = text_inputs.input_ids # untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids # if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( # text_input_ids, untruncated_ids # ): # removed_text = self.tokenizer.batch_decode( # untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] # ) # logger.warning( # "The following part of your input was truncated because CLIP can only handle sequences up to" # f" {self.tokenizer.model_max_length} tokens: {removed_text}" # ) # if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: # attention_mask = text_inputs.attention_mask.to(device) # else: # attention_mask = None # prompt_embeds = self.text_encoder( # text_input_ids.to(device), # attention_mask=attention_mask, # ) # prompt_embeds = prompt_embeds[0] # prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) # bs_embed, seq_len, _ = prompt_embeds.shape # # duplicate text embeddings for each generation per prompt, using mps friendly method # prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) # prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # # get unconditional embeddings for classifier free guidance # if do_classifier_free_guidance and negative_prompt_embeds is None: # uncond_tokens: List[str] # if negative_prompt is None: # uncond_tokens = [""] * batch_size # elif prompt is not None and type(prompt) is not type(negative_prompt): # raise TypeError( # f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" # f" {type(prompt)}." # ) # elif isinstance(negative_prompt, str): # uncond_tokens = [negative_prompt] # elif batch_size != len(negative_prompt): # raise ValueError( # f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" # f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" # " the batch size of `prompt`." # ) # else: # uncond_tokens = negative_prompt # # textual inversion: procecss multi-vector tokens if necessary # if isinstance(self, TextualInversionLoaderMixin): # uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) # max_length = prompt_embeds.shape[1] # uncond_input = self.tokenizer( # uncond_tokens, # padding="max_length", # max_length=max_length, # truncation=True, # return_tensors="pt", # ) # if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: # attention_mask = uncond_input.attention_mask.to(device) # else: # attention_mask = None # negative_prompt_embeds = self.text_encoder( # uncond_input.input_ids.to(device), # attention_mask=attention_mask, # ) # negative_prompt_embeds = negative_prompt_embeds[0] # if do_classifier_free_guidance: # # duplicate unconditional embeddings for each generation per prompt, using mps friendly method # seq_len = negative_prompt_embeds.shape[1] # negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) # negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) # negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # # For classifier free guidance, we need to do two forward passes. # # Here we concatenate the unconditional and text embeddings into a single batch # # to avoid doing two forward passes # prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # return prompt_embeds def decode_latents(self, latents): warnings.warn( "The decode_latents method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor instead", FutureWarning, ) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, ): # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)