james-ocf commited on
Commit
76a1440
·
verified ·
1 Parent(s): 37ef1d6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -3
README.md CHANGED
@@ -1,3 +1,74 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ library_name: pytorch
5
+ ---
6
+
7
+
8
+ # Cloudcasting
9
+
10
+ ## Model Description
11
+
12
+ These models are trained to predict future frames of satellite data from past frames. The model uses 3 hours
13
+ of recent satellite imagery at 15 minute intervals and predicts 3 hours into the future also at
14
+ 15 minute intervals. The satellite inputs and predictions are multispectral with 11 channels.
15
+
16
+
17
+ See [1] for the repo used to train the model.
18
+
19
+ - **Developed by:** Open Climate Fix and the Alan Turing Institute
20
+ - **License:** mit
21
+
22
+
23
+ # Training Details
24
+
25
+ ## Data
26
+
27
+ This was trained on EUMETSAT satellite imagery derived from the data stored in [this google public
28
+ dataset](https://console.cloud.google.com/marketplace/product/bigquery-public-data/eumetsat-seviri-rss?hl=en-GB&inv=1&invt=AbniZA&project=solar-pv-nowcasting&pli=1).
29
+
30
+ The data was processed using the protocol in [2]
31
+
32
+
33
+ ## Results
34
+
35
+ See the READMEs in each model dir for links to the wandb training runs
36
+
37
+
38
+ ## Usage
39
+
40
+ These models rely on [1] being installed. Example usage to load the model is shown below
41
+
42
+ ```{python}
43
+ import hydra
44
+ import yaml
45
+ from huggingface_hub import snapshot_download
46
+ from safetensors.torch import load_model
47
+
48
+
49
+ REPO_ID = "openclimatefix/cloudcasting_example_models"
50
+ REVISION = <commit-id>
51
+ MODEL = "simvp_model"
52
+
53
+ # Download the model checkpoints
54
+ hf_download_dir = snapshot_download(
55
+ repo_id=REPO_ID,
56
+ revision=REVISION,
57
+ )
58
+
59
+ # Create the model object
60
+ with open(f"{hf_download_dir}/model_config.yaml", "r", encoding="utf-8") as f:
61
+ model = hydra.utils.instantiate(yaml.safe_load(f))
62
+
63
+ # Load the model weights
64
+ load_model(
65
+ model,
66
+ filename=f"{hf_download_dir}/model.safetensors",
67
+ strict=True,
68
+ )
69
+ ```
70
+
71
+ ### Software
72
+
73
+ - [1] https://github.com/openclimatefix/sat_pred
74
+ - [2] https://github.com/alan-turing-institute/cloudcasting