oumaymaMb commited on
Commit
2e4fb41
1 Parent(s): d8db2f3

End of training

Browse files
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-multilingual-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: Bert_Text_Classification_v4
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # Bert_Text_Classification_v4
20
+
21
+ This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0376
24
+ - Accuracy: 0.9964
25
+ - F1: 0.9963
26
+ - Precision: 0.9963
27
+ - Recall: 0.9963
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 100
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
+ | 0.0043 | 0.36 | 50 | 0.0399 | 0.9955 | 0.9953 | 0.9954 | 0.9951 |
60
+ | 0.0001 | 0.72 | 100 | 0.0226 | 0.9964 | 0.9961 | 0.9962 | 0.9961 |
61
+ | 0.0193 | 1.09 | 150 | 0.0668 | 0.9900 | 0.9893 | 0.9905 | 0.9884 |
62
+ | 0.0555 | 1.45 | 200 | 0.0504 | 0.9927 | 0.9927 | 0.9934 | 0.9922 |
63
+ | 0.0465 | 1.81 | 250 | 0.0017 | 0.9991 | 0.9990 | 0.9990 | 0.9991 |
64
+ | 0.048 | 2.17 | 300 | 0.0348 | 0.9936 | 0.9934 | 0.9937 | 0.9932 |
65
+ | 0.0513 | 2.54 | 350 | 0.0699 | 0.9873 | 0.9870 | 0.9878 | 0.9865 |
66
+ | 0.0213 | 2.9 | 400 | 0.0495 | 0.9927 | 0.9926 | 0.9925 | 0.9928 |
67
+ | 0.0427 | 3.26 | 450 | 0.0587 | 0.9936 | 0.9933 | 0.9939 | 0.9928 |
68
+ | 0.0097 | 3.62 | 500 | 0.0236 | 0.9964 | 0.9961 | 0.9963 | 0.9959 |
69
+ | 0.0001 | 3.99 | 550 | 0.0279 | 0.9964 | 0.9962 | 0.9964 | 0.9959 |
70
+ | 0.0001 | 4.35 | 600 | 0.0259 | 0.9973 | 0.9972 | 0.9975 | 0.9968 |
71
+ | 0.0 | 4.71 | 650 | 0.0260 | 0.9973 | 0.9972 | 0.9975 | 0.9968 |
72
+ | 0.0091 | 5.07 | 700 | 0.0216 | 0.9964 | 0.9962 | 0.9964 | 0.9959 |
73
+ | 0.0014 | 5.43 | 750 | 0.0268 | 0.9973 | 0.9972 | 0.9971 | 0.9972 |
74
+ | 0.0 | 5.8 | 800 | 0.0383 | 0.9955 | 0.9952 | 0.9957 | 0.9947 |
75
+ | 0.0 | 6.16 | 850 | 0.0362 | 0.9964 | 0.9962 | 0.9966 | 0.9958 |
76
+ | 0.0003 | 6.52 | 900 | 0.0956 | 0.9909 | 0.9904 | 0.9900 | 0.9910 |
77
+ | 0.0247 | 6.88 | 950 | 0.0285 | 0.9973 | 0.9972 | 0.9975 | 0.9968 |
78
+ | 0.0003 | 7.25 | 1000 | 0.0333 | 0.9964 | 0.9962 | 0.9967 | 0.9958 |
79
+ | 0.0001 | 7.61 | 1050 | 0.0334 | 0.9964 | 0.9962 | 0.9967 | 0.9958 |
80
+ | 0.0003 | 7.97 | 1100 | 0.0285 | 0.9973 | 0.9972 | 0.9971 | 0.9972 |
81
+ | 0.0001 | 8.33 | 1150 | 0.0294 | 0.9964 | 0.9962 | 0.9962 | 0.9962 |
82
+ | 0.0 | 8.7 | 1200 | 0.0298 | 0.9964 | 0.9962 | 0.9962 | 0.9962 |
83
+ | 0.0045 | 9.06 | 1250 | 0.0376 | 0.9955 | 0.9953 | 0.9954 | 0.9951 |
84
+ | 0.0004 | 9.42 | 1300 | 0.0450 | 0.9946 | 0.9943 | 0.9943 | 0.9942 |
85
+ | 0.0322 | 9.78 | 1350 | 0.0492 | 0.9936 | 0.9932 | 0.9939 | 0.9926 |
86
+ | 0.003 | 10.14 | 1400 | 0.0110 | 0.9991 | 0.9991 | 0.9992 | 0.9989 |
87
+ | 0.0001 | 10.51 | 1450 | 0.0112 | 0.9991 | 0.9991 | 0.9992 | 0.9989 |
88
+ | 0.0001 | 10.87 | 1500 | 0.0124 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
89
+ | 0.0 | 11.23 | 1550 | 0.0112 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
90
+ | 0.0 | 11.59 | 1600 | 0.0111 | 0.9991 | 0.9991 | 0.9992 | 0.9989 |
91
+ | 0.0 | 11.96 | 1650 | 0.0110 | 0.9991 | 0.9991 | 0.9992 | 0.9989 |
92
+ | 0.0 | 12.32 | 1700 | 0.0110 | 0.9991 | 0.9991 | 0.9992 | 0.9989 |
93
+ | 0.0 | 12.68 | 1750 | 0.0109 | 0.9991 | 0.9991 | 0.9992 | 0.9989 |
94
+ | 0.0 | 13.04 | 1800 | 0.0109 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
95
+ | 0.0 | 13.41 | 1850 | 0.0109 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
96
+ | 0.0 | 13.77 | 1900 | 0.0109 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
97
+ | 0.0 | 14.13 | 1950 | 0.0109 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
98
+ | 0.0 | 14.49 | 2000 | 0.0109 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
99
+ | 0.0 | 14.86 | 2050 | 0.0109 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
100
+ | 0.0 | 15.22 | 2100 | 0.0109 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
101
+ | 0.0 | 15.58 | 2150 | 0.0110 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
102
+ | 0.0 | 15.94 | 2200 | 0.0110 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
103
+ | 0.0 | 16.3 | 2250 | 0.0110 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
104
+ | 0.0 | 16.67 | 2300 | 0.0111 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
105
+ | 0.0 | 17.03 | 2350 | 0.0111 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
106
+ | 0.0 | 17.39 | 2400 | 0.0111 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
107
+ | 0.0 | 17.75 | 2450 | 0.0112 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
108
+ | 0.0 | 18.12 | 2500 | 0.0112 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
109
+ | 0.0 | 18.48 | 2550 | 0.0112 | 0.9991 | 0.9990 | 0.9991 | 0.9989 |
110
+ | 0.0099 | 18.84 | 2600 | 0.0175 | 0.9973 | 0.9973 | 0.9973 | 0.9973 |
111
+ | 0.0 | 19.2 | 2650 | 0.0133 | 0.9982 | 0.9981 | 0.9983 | 0.9979 |
112
+ | 0.0 | 19.57 | 2700 | 0.0135 | 0.9982 | 0.9981 | 0.9983 | 0.9979 |
113
+ | 0.0 | 19.93 | 2750 | 0.0135 | 0.9982 | 0.9981 | 0.9983 | 0.9979 |
114
+ | 0.0 | 20.29 | 2800 | 0.0135 | 0.9982 | 0.9981 | 0.9983 | 0.9979 |
115
+ | 0.0 | 20.65 | 2850 | 0.0132 | 0.9982 | 0.9981 | 0.9983 | 0.9979 |
116
+ | 0.0 | 21.01 | 2900 | 0.0133 | 0.9982 | 0.9981 | 0.9983 | 0.9979 |
117
+ | 0.0 | 21.38 | 2950 | 0.0133 | 0.9982 | 0.9981 | 0.9983 | 0.9979 |
118
+ | 0.0 | 21.74 | 3000 | 0.0124 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
119
+ | 0.0 | 22.1 | 3050 | 0.0125 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
120
+ | 0.0 | 22.46 | 3100 | 0.0125 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
121
+ | 0.0 | 22.83 | 3150 | 0.0125 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
122
+ | 0.0 | 23.19 | 3200 | 0.0125 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
123
+ | 0.0 | 23.55 | 3250 | 0.0126 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
124
+ | 0.0 | 23.91 | 3300 | 0.0126 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
125
+ | 0.0 | 24.28 | 3350 | 0.0126 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
126
+ | 0.0 | 24.64 | 3400 | 0.0126 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
127
+ | 0.0 | 25.0 | 3450 | 0.0126 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
128
+ | 0.0 | 25.36 | 3500 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
129
+ | 0.0 | 25.72 | 3550 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
130
+ | 0.0 | 26.09 | 3600 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
131
+ | 0.0 | 26.45 | 3650 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
132
+ | 0.0 | 26.81 | 3700 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
133
+ | 0.0 | 27.17 | 3750 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
134
+ | 0.0 | 27.54 | 3800 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
135
+ | 0.0 | 27.9 | 3850 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
136
+ | 0.0 | 28.26 | 3900 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
137
+ | 0.0 | 28.62 | 3950 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
138
+ | 0.0 | 28.99 | 4000 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
139
+ | 0.0 | 29.35 | 4050 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
140
+ | 0.0 | 29.71 | 4100 | 0.0127 | 0.9982 | 0.9981 | 0.9981 | 0.9980 |
141
+
142
+
143
+ ### Framework versions
144
+
145
+ - Transformers 4.37.2
146
+ - Pytorch 2.3.0+cu121
147
+ - Tokenizers 0.15.2
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-multilingual-uncased",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "random",
14
+ "1": "Event",
15
+ "2": "Meeting",
16
+ "3": "Project"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "Event": 1,
22
+ "Meeting": 2,
23
+ "Project": 3,
24
+ "random": 0
25
+ },
26
+ "layer_norm_eps": 1e-12,
27
+ "max_position_embeddings": 512,
28
+ "model_type": "bert",
29
+ "num_attention_heads": 12,
30
+ "num_hidden_layers": 12,
31
+ "pad_token_id": 0,
32
+ "pooler_fc_size": 768,
33
+ "pooler_num_attention_heads": 12,
34
+ "pooler_num_fc_layers": 3,
35
+ "pooler_size_per_head": 128,
36
+ "pooler_type": "first_token_transform",
37
+ "position_embedding_type": "absolute",
38
+ "problem_type": "single_label_classification",
39
+ "torch_dtype": "float32",
40
+ "transformers_version": "4.37.2",
41
+ "type_vocab_size": 2,
42
+ "use_cache": true,
43
+ "vocab_size": 105879
44
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:152adae45714b13a16aabe2353d81127de8228571ff01c2657899932156f8398
3
+ size 669461512
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b95ce86a5ee4901fd747dfaf61b62be65067885c92e76d1662f3df9099e42ea8
3
+ size 4664
vocab.txt ADDED
The diff for this file is too large to render. See raw diff