--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: kinit/slovakbert-sentiment-twitter metrics: - accuracy widget: - text: Pan Vilasek bol velmi mily, snaizl sa spestrit vyucbu zaujimavymi aktivitami. a zaroven sa snazil nam vstiepit nieco z nemciny. skripta z ktorych sa ucime by vsak mohli byt kusok zlozitejsie, slovna zasoba je vecsinou trivialna... - text: Predmet na ktorom sa skvelo naucite zaklady html a css a celkovo webdizajnu, dobre prednasky a cvicenia kde si to precvicite - text: Super zostavena prednaska, veci pre mna zaujimave, lebo viem ze sa celkom pouzivaju, vyborne vysvetlovane, tempo na mna tak akurat - vela sa stihlo (clovek sa nenudil) ale na druhej strane sa aj dalo stihat ak si to clovek aspon raz za cas pozrel. Co som pocul tak niektori si stazovali na narocnost vykladu, ale myslim ze to je skor tym, ze ked sa na to niekto ani raz nepozrie nemoze cakat ze vsetko hned na prve pocutie pochopi. este raz - super - text: potešili by ma praktické ukážky namiesto viacnásobných odvodení podobných vecí - text: Veľmi zaujímavé, zrozumiteľne podané a niekedy aj vtipné:) pipeline_tag: text-classification inference: true model-index: - name: SetFit with kinit/slovakbert-sentiment-twitter results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.6830314585319351 name: Accuracy --- # SetFit with kinit/slovakbert-sentiment-twitter This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [kinit/slovakbert-sentiment-twitter](https://huggingface.co/kinit/slovakbert-sentiment-twitter) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [kinit/slovakbert-sentiment-twitter](https://huggingface.co/kinit/slovakbert-sentiment-twitter) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 514 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | -1 | | | 1 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.6830 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("pEpOo/setfit-model-24-3") # Run inference preds = model("Veľmi zaujímavé, zrozumiteľne podané a niekedy aj vtipné:)") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 41.9167 | 128 | | Label | Training Sample Count | |:------|:----------------------| | -1 | 8 | | 0 | 8 | | 1 | 0 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 10 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0333 | 1 | 0.3101 | - | | 1.6667 | 50 | 0.0032 | - | | 3.3333 | 100 | 0.0012 | - | | 5.0 | 150 | 0.0004 | - | | 6.6667 | 200 | 0.0002 | - | | 8.3333 | 250 | 0.0003 | - | | 10.0 | 300 | 0.0002 | - | ### Framework Versions - Python: 3.11.0 - SetFit: 1.0.3 - Sentence Transformers: 2.5.1 - Transformers: 4.38.2 - PyTorch: 2.2.1+cu121 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```