pabRomero commited on
Commit
66d069f
·
verified ·
1 Parent(s): d7b2bda

Training complete

Browse files
README.md CHANGED
@@ -1,73 +1,74 @@
1
- ---
2
- base_model: medicalai/ClinicalBERT
3
- tags:
4
- - generated_from_trainer
5
- metrics:
6
- - precision
7
- - recall
8
- - f1
9
- - accuracy
10
- model-index:
11
- - name: ClinicalBERT-full-finetuned-ner-pablo
12
- results: []
13
- ---
14
-
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
-
18
- # ClinicalBERT-full-finetuned-ner-pablo
19
-
20
- This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset.
21
- It achieves the following results on the evaluation set:
22
- - Loss: 0.1310
23
- - Precision: 0.8133
24
- - Recall: 0.8062
25
- - F1: 0.8097
26
- - Accuracy: 0.9711
27
-
28
- ## Model description
29
-
30
- More information needed
31
-
32
- ## Intended uses & limitations
33
-
34
- More information needed
35
-
36
- ## Training and evaluation data
37
-
38
- More information needed
39
-
40
- ## Training procedure
41
-
42
- ### Training hyperparameters
43
-
44
- The following hyperparameters were used during training:
45
- - learning_rate: 0.0002
46
- - train_batch_size: 16
47
- - eval_batch_size: 16
48
- - seed: 42
49
- - gradient_accumulation_steps: 4
50
- - total_train_batch_size: 64
51
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
- - lr_scheduler_type: linear
53
- - lr_scheduler_warmup_ratio: 0.05
54
- - num_epochs: 5
55
- - mixed_precision_training: Native AMP
56
-
57
- ### Training results
58
-
59
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
- |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
- | 0.2458 | 0.9996 | 652 | 0.1086 | 0.7977 | 0.7616 | 0.7792 | 0.9688 |
62
- | 0.0928 | 1.9992 | 1304 | 0.1023 | 0.8005 | 0.7676 | 0.7837 | 0.9704 |
63
- | 0.0706 | 2.9989 | 1956 | 0.1071 | 0.8143 | 0.7892 | 0.8015 | 0.9710 |
64
- | 0.04 | 4.0 | 2609 | 0.1132 | 0.8165 | 0.8046 | 0.8105 | 0.9708 |
65
- | 0.0313 | 4.9981 | 3260 | 0.1310 | 0.8133 | 0.8062 | 0.8097 | 0.9711 |
66
-
67
-
68
- ### Framework versions
69
-
70
- - Transformers 4.44.0
71
- - Pytorch 2.4.0+cu124
72
- - Datasets 2.21.0
73
- - Tokenizers 0.19.1
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: medicalai/ClinicalBERT
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: ClinicalBERT-full-finetuned-ner-pablo
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # ClinicalBERT-full-finetuned-ner-pablo
20
+
21
+ This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1104
24
+ - Precision: 0.8025
25
+ - Recall: 0.8001
26
+ - F1: 0.8013
27
+ - Accuracy: 0.9745
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0002
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 64
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.05
55
+ - num_epochs: 5
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
61
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
62
+ | No log | 0.9970 | 252 | 0.0878 | 0.7903 | 0.7758 | 0.7830 | 0.9748 |
63
+ | 0.1581 | 1.9980 | 505 | 0.0857 | 0.8096 | 0.7836 | 0.7964 | 0.9755 |
64
+ | 0.1581 | 2.9990 | 758 | 0.0872 | 0.8010 | 0.7867 | 0.7938 | 0.9740 |
65
+ | 0.0417 | 4.0 | 1011 | 0.0976 | 0.7950 | 0.8012 | 0.7981 | 0.9736 |
66
+ | 0.0417 | 4.9852 | 1260 | 0.1104 | 0.8025 | 0.8001 | 0.8013 | 0.9745 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.44.2
72
+ - Pytorch 2.4.0+cu121
73
+ - Datasets 2.21.0
74
+ - Tokenizers 0.19.1
runs/Aug23_14-12-11_ee1898c059d7/events.out.tfevents.1724422332.ee1898c059d7.1664.6 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:32420e9e9af620dece0af20851f13063e4e08e7c5473651d5a694ddbfd399f26
3
- size 7976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89d36a3f8ef2f0177383656e2992690d2d0fcfb06b9faf31ded49d3e7931280a
3
+ size 8802