--- library_name: transformers base_model: medicalai/ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ClinicalBERT-full-finetuned-ner-pablo results: [] --- # ClinicalBERT-full-finetuned-ner-pablo This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1104 - Precision: 0.8025 - Recall: 0.8001 - F1: 0.8013 - Accuracy: 0.9745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9970 | 252 | 0.0878 | 0.7903 | 0.7758 | 0.7830 | 0.9748 | | 0.1581 | 1.9980 | 505 | 0.0857 | 0.8096 | 0.7836 | 0.7964 | 0.9755 | | 0.1581 | 2.9990 | 758 | 0.0872 | 0.8010 | 0.7867 | 0.7938 | 0.9740 | | 0.0417 | 4.0 | 1011 | 0.0976 | 0.7950 | 0.8012 | 0.7981 | 0.9736 | | 0.0417 | 4.9852 | 1260 | 0.1104 | 0.8025 | 0.8001 | 0.8013 | 0.9745 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1