File size: 3,406 Bytes
1e8131e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336bda0
 
 
 
 
 
 
 
1e8131e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96622a6
 
5231691
 
f497b02
 
328c2a9
 
c21fc99
 
58195ef
 
336bda0
 
1e8131e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_keras_callback
model-index:
- name: pakawadeep/mt5-base-finetuned-ctfl-augmented
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pakawadeep/mt5-base-finetuned-ctfl-augmented

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8809
- Validation Loss: 0.8625
- Train Rouge1: 8.7459
- Train Rouge2: 1.8812
- Train Rougel: 8.6987
- Train Rougelsum: 8.8166
- Train Gen Len: 11.9257
- Epoch: 14

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 6.9468     | 2.5770          | 1.3751       | 0.2405       | 1.3339       | 1.3916          | 8.5050        | 0     |
| 3.5520     | 2.0970          | 5.5693       | 0.8251       | 5.5487       | 5.6106          | 10.8564       | 1     |
| 2.7376     | 2.2001          | 5.1568       | 1.3201       | 4.9505       | 5.1155          | 10.0099       | 2     |
| 2.4757     | 1.8936          | 6.2706       | 1.1881       | 6.2235       | 6.3885          | 10.3614       | 3     |
| 2.1064     | 1.5432          | 7.4045       | 1.6832       | 7.2136       | 7.4116          | 11.1040       | 4     |
| 1.8167     | 1.3532          | 8.4866       | 2.1782       | 8.4158       | 8.6987          | 11.5644       | 5     |
| 1.6032     | 1.1789          | 8.6987       | 2.1782       | 8.4866       | 8.6987          | 11.8267       | 6     |
| 1.4351     | 1.1083          | 8.6987       | 2.1782       | 8.4866       | 8.6987          | 11.9059       | 7     |
| 1.3021     | 1.0607          | 8.9109       | 2.3762       | 8.8048       | 8.9816          | 11.9604       | 8     |
| 1.2060     | 1.0120          | 8.9109       | 2.3762       | 8.8048       | 8.9816          | 11.9455       | 9     |
| 1.1182     | 0.9736          | 8.6987       | 1.8812       | 8.6987       | 8.7694          | 11.9703       | 10    |
| 1.0551     | 0.9458          | 8.6987       | 1.8812       | 8.6987       | 8.7694          | 11.9406       | 11    |
| 0.9862     | 0.9170          | 8.5926       | 1.3861       | 8.5337       | 8.6516          | 11.9455       | 12    |
| 0.9324     | 0.8727          | 8.5101       | 1.3861       | 8.4807       | 8.5691          | 11.9208       | 13    |
| 0.8809     | 0.8625          | 8.7459       | 1.8812       | 8.6987       | 8.8166          | 11.9257       | 14    |


### Framework versions

- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2