--- library_name: peft license: gemma base_model: google/paligemma-3b-pt-224 tags: - generated_from_trainer model-index: - name: paligemma_ocr_final results: [] --- # paligemma_ocr_final This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.3076 | 0.2888 | 20 | 2.7240 | | 9.9169 | 0.5776 | 40 | 2.3545 | | 9.1021 | 0.8664 | 60 | 2.2845 | | 9.0472 | 1.1552 | 80 | 2.2641 | | 8.893 | 1.4440 | 100 | 2.2649 | | 8.8682 | 1.7329 | 120 | 2.2630 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.4.1+cu124 - Datasets 2.19.1 - Tokenizers 0.20.1