File size: 4,103 Bytes
7d75cd6
 
 
 
 
 
 
 
 
 
 
 
3425326
7d75cd6
3425326
7d75cd6
 
 
dff7ae1
7d75cd6
dff7ae1
7d75cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
e52178a
7d75cd6
 
 
 
 
 
db961d0
7d75cd6
 
 
 
 
 
 
3425326
7d75cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3425326
7d75cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3425326
7d75cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: mit
datasets:
- pankajmathur/orca_mini_v1_dataset
- pankajmathur/orca_mini_v8_sharegpt_format
language:
- en
base_model:
- microsoft/phi-4
library_name: transformers
---

# Model Name: orca_mini_phi-4

**orca_mini_phi-4 is trained with various SFT Datasets on [microsoft/phi-4](https://huggingface.co/microsoft/phi-4) using Llama's architecture.**

<img src="https://huggingface.co/pankajmathur/orca_mini_v5_8b/resolve/main/orca_minis_small.jpeg" width="auto" />


<strong>
"Obsessed with Open Source GenAI's potential? So am I ! Let's Contribute together 🚀 <a href="https://www.linkedin.com/in/pankajam" target="_blank">https://www.linkedin.com/in/pankajam</a>"
</strong>

<br>

### NOTICE
By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges. 
I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model. 
Dive in and innovate!


### Example Usage

**Use this model for Free on Google Colab with T4 GPU :)**

<a target="_blank" href="https://colab.research.google.com/#fileId=https://huggingface.co/pankajmathur/orca_mini_phi-4/blob/main/Orca_Mini_Chat_4bit_Phi_4.ipynb">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>

### Example Usage on Your Personal Computer

Download GGUF version here and Follow Ollama instructions:
[https://huggingface.co/pankajmathur/orca_mini_phi-4-GGUF](https://huggingface.co/pankajmathur/orca_mini_phi-4-GGUF)

Below shows a code example on how to use this model in default half precision (bfloat16) format

```python
import torch
from transformers import pipeline

model_slug = "pankajmathur/orca_mini_phi-4"
pipeline = pipeline(
    "text-generation",
    model=model_slug,
    device_map="auto",
)
messages = [
    {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
    {"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"][-1])
```

Below shows a code example on how to use this model in 4-bit format via bitsandbytes library

```python
import torch
from transformers import BitsAndBytesConfig, pipeline

model_slug = "pankajmathur/orca_mini_phi-4"
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype="float16",
    bnb_4bit_use_double_quant=True,
)
pipeline = pipeline(
    "text-generation",
    model=model_slug,
    model_kwargs={"quantization_config": quantization_config},
    device_map="auto",
)
messages = [
    {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
    {"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"][-1])

```

Below shows a code example on how to use this model in 8-bit format via bitsandbytes library

```python
import torch
from transformers import BitsAndBytesConfig, pipeline

model_slug = "pankajmathur/orca_mini_phi-4"
quantization_config = BitsAndBytesConfig(
    load_in_8bit=True
)
pipeline = pipeline(
    "text-generation",
    model=model_slug,
    model_kwargs={"quantization_config": quantization_config},
    device_map="auto",
)
messages = [
    {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
    {"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"][-1])

```


[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)