---
license: mit
datasets:
- pankajmathur/orca_mini_v1_dataset
- pankajmathur/orca_mini_v8_sharegpt_format
language:
- en
base_model:
- microsoft/phi-4
library_name: transformers
---
# Model Name: orca_mini_phi-4
**orca_mini_phi-4 is trained with various SFT Datasets on [microsoft/phi-4](https://huggingface.co/microsoft/phi-4) using Llama's architecture.**
"Obsessed with GenAI's potential? So am I ! Let's create together 🚀 https://www.linkedin.com/in/pankajam"
### NOTICE
By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges.
I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model.
Dive in and innovate!
### Example Usage
**Use this model for Free on Google Colab with T4 GPU :)**
### Example Usage on Your Personal Computer
Download GGUF version here and Follow Ollama instructions:
coming soon....
Below shows a code example on how to use this model in default half precision (bfloat16) format
```python
import torch
from transformers import pipeline
model_slug = "pankajmathur/orca_mini_phi-4"
pipeline = pipeline(
"text-generation",
model=model_slug,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"][-1])
```
Below shows a code example on how to use this model in 4-bit format via bitsandbytes library
```python
import torch
from transformers import BitsAndBytesConfig, pipeline
model_slug = "pankajmathur/orca_mini_phi-4"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True,
)
pipeline = pipeline(
"text-generation",
model=model_slug,
model_kwargs={"quantization_config": quantization_config},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"][-1])
```
Below shows a code example on how to use this model in 8-bit format via bitsandbytes library
```python
import torch
from transformers import BitsAndBytesConfig, pipeline
model_slug = "pankajmathur/orca_mini_phi-4"
quantization_config = BitsAndBytesConfig(
load_in_8bit=True
)
pipeline = pipeline(
"text-generation",
model=model_slug,
model_kwargs={"quantization_config": quantization_config},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"][-1])
```
[
](https://github.com/OpenAccess-AI-Collective/axolotl)