---
license: apache-2.0
model-index:
- name: orca_mini_v7_72b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 59.3
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v7_72b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 55.06
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v7_72b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 26.44
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v7_72b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.01
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v7_72b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 24.21
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v7_72b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.35
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v7_72b
name: Open LLM Leaderboard
---
**Model Name: Qwen2 orca_mini_v7_72b**
# Qwen2 orca_mini_v7_72b is trained with various SFT Datasets
Passionate about Generative AI? I help companies to privately train and deploy custom LLM/MLLM affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat!
https://www.linkedin.com/in/pankajam Looking forward to connecting!
### NOTICE
By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges.
I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model.
Dive in and innovate!
### Example Usage
Here is the ChatML prompt format
```
<|im_start|>system
You are Orca Mini, a helpful AI assistant.<|im_end|>
<|im_start|>user
Hello Orca Mini, what can you do for me?<|im_end|>
<|im_start|>assistant
```
Below shows a code example on how to use this model
```python
from transformers import AutoModel, AutoTokenizer
model_slug = "pankajmathur/orca_mini_v7_72b"
model = AutoModel.from_pretrained(model_slug)
tokenizer = AutoTokenizer.from_pretrained(model_slug)
messages = [
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
model.generate(**gen_input)
```
**Quants**
GGUF : Coming Soon
AWQ: Coming Soon
### Processing Long Texts (Based upon Qwen2-7B-Instruct suggestions at https://huggingface.co/Qwen/Qwen2-7B-Instruct)
To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:
1. **Install vLLM**: You can install vLLM by running the following command.
```bash
pip install "vllm>=0.4.3"
```
Or you can install vLLM from [source](https://github.com/vllm-project/vllm/).
2. **Configure Model Settings**: After downloading the model weights, modify the `config.json` file by including the below snippet:
```json
{
"architectures": [
"Qwen2ForCausalLM"
],
// ...
"vocab_size": 152064,
// adding the following snippets
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
This snippet enable YARN to support longer contexts.
3. **Model Deployment**: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:
```bash
python -u -m vllm.entrypoints.openai.api_server --model pankajmathur/orca_mini_v7_72b
```
Then you can access the Chat API by:
```bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "pankajmathur/orca_mini_v7_72b",
"messages": [
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]
}'
```
**Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_pankajmathur__orca_mini_v7_72b)
| Metric |Value|
|-------------------|----:|
|Avg. |39.06|
|IFEval (0-Shot) |59.30|
|BBH (3-Shot) |55.06|
|MATH Lvl 5 (4-Shot)|26.44|
|GPQA (0-shot) |18.01|
|MuSR (0-shot) |24.21|
|MMLU-PRO (5-shot) |51.35|