Papers
arxiv:1901.07291

Cross-lingual Language Model Pretraining

Published on Jan 22, 2019
Authors:
,

Abstract

Recent studies have demonstrated the efficiency of generative pretraining for English natural language understanding. In this work, we extend this approach to multiple languages and show the effectiveness of cross-lingual pretraining. We propose two methods to learn cross-lingual language models (XLMs): one unsupervised that only relies on monolingual data, and one supervised that leverages parallel data with a new cross-lingual language model objective. We obtain state-of-the-art results on cross-lingual classification, unsupervised and supervised machine translation. On XNLI, our approach pushes the state of the art by an absolute gain of 4.9% accuracy. On unsupervised machine translation, we obtain 34.3 BLEU on WMT'16 German-English, improving the previous state of the art by more than 9 BLEU. On supervised machine translation, we obtain a new state of the art of 38.5 BLEU on WMT'16 Romanian-English, outperforming the previous best approach by more than 4 BLEU. Our code and pretrained models will be made publicly available.

Community

Sign up or log in to comment

Models citing this paper 15

Browse 15 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/1901.07291 in a dataset README.md to link it from this page.

Spaces citing this paper 47

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.