Papers
arxiv:2305.11738

CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing

Published on May 19, 2023
· Submitted by akhaliq on May 22, 2023
#3 Paper of the day
Authors:
,
,
,

Abstract

Recent developments in large language models (LLMs) have been impressive. However, these models sometimes show inconsistencies and problematic behavior, such as hallucinating facts, generating flawed code, or creating offensive and toxic content. Unlike these models, humans typically utilize external tools to cross-check and refine their initial content, like using a search engine for fact-checking, or a code interpreter for debugging. Inspired by this observation, we introduce a framework called CRITIC that allows LLMs, which are essentially "black boxes" to validate and progressively amend their own outputs in a manner similar to human interaction with tools. More specifically, starting with an initial output, CRITIC interacts with appropriate tools to evaluate certain aspects of the text, and then revises the output based on the feedback obtained during this validation process. Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs. Meanwhile, our research highlights the crucial importance of external feedback in promoting the ongoing self-improvement of LLMs.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2305.11738 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2305.11738 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2305.11738 in a Space README.md to link it from this page.

Collections including this paper 8