Papers
arxiv:2402.01728

Hardware Phi-1.5B: A Large Language Model Encodes Hardware Domain Specific Knowledge

Published on Jan 27, 2024
Authors:
,
,
,
,
,
,
,
,

Abstract

In the rapidly evolving semiconductor industry, where research, design, verification, and manufacturing are intricately linked, the potential of Large Language Models to revolutionize hardware design and security verification is immense. The primary challenge, however, lies in the complexity of hardware specific issues that are not adequately addressed by the natural language or software code knowledge typically acquired during the pretraining stage. Additionally, the scarcity of datasets specific to the hardware domain poses a significant hurdle in developing a foundational model. Addressing these challenges, this paper introduces Hardware Phi 1.5B, an innovative large language model specifically tailored for the hardware domain of the semiconductor industry. We have developed a specialized, tiered dataset comprising small, medium, and large subsets and focused our efforts on pretraining using the medium dataset. This approach harnesses the compact yet efficient architecture of the Phi 1.5B model. The creation of this first pretrained, hardware domain specific large language model marks a significant advancement, offering improved performance in hardware design and verification tasks and illustrating a promising path forward for AI applications in the semiconductor sector.

Community

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 3

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2402.01728 in a Space README.md to link it from this page.

Collections including this paper 1