Compress3D: a Compressed Latent Space for 3D Generation from a Single Image
Abstract
3D generation has witnessed significant advancements, yet efficiently producing high-quality 3D assets from a single image remains challenging. In this paper, we present a triplane autoencoder, which encodes 3D models into a compact triplane latent space to effectively compress both the 3D geometry and texture information. Within the autoencoder framework, we introduce a 3D-aware cross-attention mechanism, which utilizes low-resolution latent representations to query features from a high-resolution 3D feature volume, thereby enhancing the representation capacity of the latent space. Subsequently, we train a diffusion model on this refined latent space. In contrast to solely relying on image embedding for 3D generation, our proposed method advocates for the simultaneous utilization of both image embedding and shape embedding as conditions. Specifically, the shape embedding is estimated via a diffusion prior model conditioned on the image embedding. Through comprehensive experiments, we demonstrate that our method outperforms state-of-the-art algorithms, achieving superior performance while requiring less training data and time. Our approach enables the generation of high-quality 3D assets in merely 7 seconds on a single A100 GPU.
Community
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding (2024)
- LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation (2024)
- LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation (2024)
- Envision3D: One Image to 3D with Anchor Views Interpolation (2024)
- VideoMV: Consistent Multi-View Generation Based on Large Video Generative Model (2024)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Revolutionizing 3D: Single Image to High-Quality 3D Models with Compress3D!
Links ๐:
๐ Subscribe: https://www.youtube.com/@Arxflix
๐ Twitter: https://x.com/arxflix
๐ LMNT (Partner): https://lmnt.com/
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper