Papers
arxiv:2406.13193

PRESTO: Progressive Pretraining Enhances Synthetic Chemistry Outcomes

Published on Jun 19
Authors:
,
,
,
,
,

Abstract

Multimodal Large Language Models (MLLMs) have seen growing adoption across various scientific disciplines. These advancements encourage the investigation of molecule-text modeling within synthetic chemistry, a field dedicated to designing and conducting chemical reactions to synthesize new compounds with desired properties and applications. Current approaches, however, often neglect the critical role of multiple molecule graph interaction in understanding chemical reactions, leading to suboptimal performance in synthetic chemistry tasks. This study introduces PRESTO(Progressive Pretraining Enhances Synthetic Chemistry Outcomes), a new framework that bridges the molecule-text modality gap by integrating a comprehensive benchmark of pretraining strategies and dataset configurations. It progressively improves multimodal LLMs through cross-modal alignment and multi-graph understanding. Our extensive experiments demonstrate that PRESTO offers competitive results in downstream synthetic chemistry tasks. The code can be found at https://github.com/IDEA-XL/PRESTO.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2406.13193 in a model README.md to link it from this page.

Datasets citing this paper 8

Browse 8 datasets citing this paper

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2406.13193 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.