Towards AI-Safety-by-Design: A Taxonomy of Runtime Guardrails in Foundation Model based Systems
Abstract
The rapid advancement and widespread deployment of foundation model (FM) based systems have revolutionized numerous applications across various domains. However, the fast-growing capabilities and autonomy have also raised significant concerns about responsible AI and AI safety. Recently, there have been increasing attention toward implementing guardrails to ensure the runtime behavior of FM-based systems is safe and responsible. Given the early stage of FMs and their applications (such as agents), the design of guardrails have not yet been systematically studied. It remains underexplored which software qualities should be considered when designing guardrails and how these qualities can be ensured from a software architecture perspective. Therefore, in this paper, we present a taxonomy for guardrails to classify and compare the characteristics and design options of guardrails. Our taxonomy is organized into three main categories: the motivation behind adopting runtime guardrails, the quality attributes to consider, and the design options available. This taxonomy provides structured and concrete guidance for making architectural design decisions when designing guardrails and highlights trade-offs arising from the design decisions.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper