Papers
arxiv:2502.17258

VideoGrain: Modulating Space-Time Attention for Multi-grained Video Editing

Published on Feb 24
· Submitted by akhaliq on Feb 25
#2 Paper of the day
Authors:
,

Abstract

Recent advancements in diffusion models have significantly improved video generation and editing capabilities. However, multi-grained video editing, which encompasses class-level, instance-level, and part-level modifications, remains a formidable challenge. The major difficulties in multi-grained editing include semantic misalignment of text-to-region control and feature coupling within the diffusion model. To address these difficulties, we present VideoGrain, a zero-shot approach that modulates space-time (cross- and self-) attention mechanisms to achieve fine-grained control over video content. We enhance text-to-region control by amplifying each local prompt's attention to its corresponding spatial-disentangled region while minimizing interactions with irrelevant areas in cross-attention. Additionally, we improve feature separation by increasing intra-region awareness and reducing inter-region interference in self-attention. Extensive experiments demonstrate our method achieves state-of-the-art performance in real-world scenarios. Our code, data, and demos are available at https://knightyxp.github.io/VideoGrain_project_page/

Community

This comment has been hidden (marked as Graphic Content)
This comment has been hidden (marked as Spam)

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2502.17258 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2502.17258 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2502.17258 in a Space README.md to link it from this page.

Collections including this paper 2