Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeReconstructive Neuron Pruning for Backdoor Defense
Deep neural networks (DNNs) have been found to be vulnerable to backdoor attacks, raising security concerns about their deployment in mission-critical applications. While existing defense methods have demonstrated promising results, it is still not clear how to effectively remove backdoor-associated neurons in backdoored DNNs. In this paper, we propose a novel defense called Reconstructive Neuron Pruning (RNP) to expose and prune backdoor neurons via an unlearning and then recovering process. Specifically, RNP first unlearns the neurons by maximizing the model's error on a small subset of clean samples and then recovers the neurons by minimizing the model's error on the same data. In RNP, unlearning is operated at the neuron level while recovering is operated at the filter level, forming an asymmetric reconstructive learning procedure. We show that such an asymmetric process on only a few clean samples can effectively expose and prune the backdoor neurons implanted by a wide range of attacks, achieving a new state-of-the-art defense performance. Moreover, the unlearned model at the intermediate step of our RNP can be directly used to improve other backdoor defense tasks including backdoor removal, trigger recovery, backdoor label detection, and backdoor sample detection. Code is available at https://github.com/bboylyg/RNP.
Expose Before You Defend: Unifying and Enhancing Backdoor Defenses via Exposed Models
Backdoor attacks covertly implant triggers into deep neural networks (DNNs) by poisoning a small portion of the training data with pre-designed backdoor triggers. This vulnerability is exacerbated in the era of large models, where extensive (pre-)training on web-crawled datasets is susceptible to compromise. In this paper, we introduce a novel two-step defense framework named Expose Before You Defend (EBYD). EBYD unifies existing backdoor defense methods into a comprehensive defense system with enhanced performance. Specifically, EBYD first exposes the backdoor functionality in the backdoored model through a model preprocessing step called backdoor exposure, and then applies detection and removal methods to the exposed model to identify and eliminate the backdoor features. In the first step of backdoor exposure, we propose a novel technique called Clean Unlearning (CUL), which proactively unlearns clean features from the backdoored model to reveal the hidden backdoor features. We also explore various model editing/modification techniques for backdoor exposure, including fine-tuning, model sparsification, and weight perturbation. Using EBYD, we conduct extensive experiments on 10 image attacks and 6 text attacks across 2 vision datasets (CIFAR-10 and an ImageNet subset) and 4 language datasets (SST-2, IMDB, Twitter, and AG's News). The results demonstrate the importance of backdoor exposure for backdoor defense, showing that the exposed models can significantly benefit a range of downstream defense tasks, including backdoor label detection, backdoor trigger recovery, backdoor model detection, and backdoor removal. We hope our work could inspire more research in developing advanced defense frameworks with exposed models. Our code is available at: https://github.com/bboylyg/Expose-Before-You-Defend.
Backdoor Secrets Unveiled: Identifying Backdoor Data with Optimized Scaled Prediction Consistency
Modern machine learning (ML) systems demand substantial training data, often resorting to external sources. Nevertheless, this practice renders them vulnerable to backdoor poisoning attacks. Prior backdoor defense strategies have primarily focused on the identification of backdoored models or poisoned data characteristics, typically operating under the assumption of access to clean data. In this work, we delve into a relatively underexplored challenge: the automatic identification of backdoor data within a poisoned dataset, all under realistic conditions, i.e., without the need for additional clean data or without manually defining a threshold for backdoor detection. We draw an inspiration from the scaled prediction consistency (SPC) technique, which exploits the prediction invariance of poisoned data to an input scaling factor. Based on this, we pose the backdoor data identification problem as a hierarchical data splitting optimization problem, leveraging a novel SPC-based loss function as the primary optimization objective. Our innovation unfolds in several key aspects. First, we revisit the vanilla SPC method, unveiling its limitations in addressing the proposed backdoor identification problem. Subsequently, we develop a bi-level optimization-based approach to precisely identify backdoor data by minimizing the advanced SPC loss. Finally, we demonstrate the efficacy of our proposal against a spectrum of backdoor attacks, encompassing basic label-corrupted attacks as well as more sophisticated clean-label attacks, evaluated across various benchmark datasets. Experiment results show that our approach often surpasses the performance of current baselines in identifying backdoor data points, resulting in about 4%-36% improvement in average AUROC. Codes are available at https://github.com/OPTML-Group/BackdoorMSPC.
Beating Backdoor Attack at Its Own Game
Deep neural networks (DNNs) are vulnerable to backdoor attack, which does not affect the network's performance on clean data but would manipulate the network behavior once a trigger pattern is added. Existing defense methods have greatly reduced attack success rate, but their prediction accuracy on clean data still lags behind a clean model by a large margin. Inspired by the stealthiness and effectiveness of backdoor attack, we propose a simple but highly effective defense framework which injects non-adversarial backdoors targeting poisoned samples. Following the general steps in backdoor attack, we detect a small set of suspected samples and then apply a poisoning strategy to them. The non-adversarial backdoor, once triggered, suppresses the attacker's backdoor on poisoned data, but has limited influence on clean data. The defense can be carried out during data preprocessing, without any modification to the standard end-to-end training pipeline. We conduct extensive experiments on multiple benchmarks with different architectures and representative attacks. Results demonstrate that our method achieves state-of-the-art defense effectiveness with by far the lowest performance drop on clean data. Considering the surprising defense ability displayed by our framework, we call for more attention to utilizing backdoor for backdoor defense. Code is available at https://github.com/damianliumin/non-adversarial_backdoor.
BATT: Backdoor Attack with Transformation-based Triggers
Deep neural networks (DNNs) are vulnerable to backdoor attacks. The backdoor adversaries intend to maliciously control the predictions of attacked DNNs by injecting hidden backdoors that can be activated by adversary-specified trigger patterns during the training process. One recent research revealed that most of the existing attacks failed in the real physical world since the trigger contained in the digitized test samples may be different from that of the one used for training. Accordingly, users can adopt spatial transformations as the image pre-processing to deactivate hidden backdoors. In this paper, we explore the previous findings from another side. We exploit classical spatial transformations (i.e. rotation and translation) with the specific parameter as trigger patterns to design a simple yet effective poisoning-based backdoor attack. For example, only images rotated to a particular angle can activate the embedded backdoor of attacked DNNs. Extensive experiments are conducted, verifying the effectiveness of our attack under both digital and physical settings and its resistance to existing backdoor defenses.
Poisoned Forgery Face: Towards Backdoor Attacks on Face Forgery Detection
The proliferation of face forgery techniques has raised significant concerns within society, thereby motivating the development of face forgery detection methods. These methods aim to distinguish forged faces from genuine ones and have proven effective in practical applications. However, this paper introduces a novel and previously unrecognized threat in face forgery detection scenarios caused by backdoor attack. By embedding backdoors into models and incorporating specific trigger patterns into the input, attackers can deceive detectors into producing erroneous predictions for forged faces. To achieve this goal, this paper proposes Poisoned Forgery Face framework, which enables clean-label backdoor attacks on face forgery detectors. Our approach involves constructing a scalable trigger generator and utilizing a novel convolving process to generate translation-sensitive trigger patterns. Moreover, we employ a relative embedding method based on landmark-based regions to enhance the stealthiness of the poisoned samples. Consequently, detectors trained on our poisoned samples are embedded with backdoors. Notably, our approach surpasses SoTA backdoor baselines with a significant improvement in attack success rate (+16.39\% BD-AUC) and reduction in visibility (-12.65\% L_infty). Furthermore, our attack exhibits promising performance against backdoor defenses. We anticipate that this paper will draw greater attention to the potential threats posed by backdoor attacks in face forgery detection scenarios. Our codes will be made available at https://github.com/JWLiang007/PFF
Spy-Watermark: Robust Invisible Watermarking for Backdoor Attack
Backdoor attack aims to deceive a victim model when facing backdoor instances while maintaining its performance on benign data. Current methods use manual patterns or special perturbations as triggers, while they often overlook the robustness against data corruption, making backdoor attacks easy to defend in practice. To address this issue, we propose a novel backdoor attack method named Spy-Watermark, which remains effective when facing data collapse and backdoor defense. Therein, we introduce a learnable watermark embedded in the latent domain of images, serving as the trigger. Then, we search for a watermark that can withstand collapse during image decoding, cooperating with several anti-collapse operations to further enhance the resilience of our trigger against data corruption. Extensive experiments are conducted on CIFAR10, GTSRB, and ImageNet datasets, demonstrating that Spy-Watermark overtakes ten state-of-the-art methods in terms of robustness and stealthiness.
TIJO: Trigger Inversion with Joint Optimization for Defending Multimodal Backdoored Models
We present a Multimodal Backdoor Defense technique TIJO (Trigger Inversion using Joint Optimization). Recent work arXiv:2112.07668 has demonstrated successful backdoor attacks on multimodal models for the Visual Question Answering task. Their dual-key backdoor trigger is split across two modalities (image and text), such that the backdoor is activated if and only if the trigger is present in both modalities. We propose TIJO that defends against dual-key attacks through a joint optimization that reverse-engineers the trigger in both the image and text modalities. This joint optimization is challenging in multimodal models due to the disconnected nature of the visual pipeline which consists of an offline feature extractor, whose output is then fused with the text using a fusion module. The key insight enabling the joint optimization in TIJO is that the trigger inversion needs to be carried out in the object detection box feature space as opposed to the pixel space. We demonstrate the effectiveness of our method on the TrojVQA benchmark, where TIJO improves upon the state-of-the-art unimodal methods from an AUC of 0.6 to 0.92 on multimodal dual-key backdoors. Furthermore, our method also improves upon the unimodal baselines on unimodal backdoors. We present ablation studies and qualitative results to provide insights into our algorithm such as the critical importance of overlaying the inverted feature triggers on all visual features during trigger inversion. The prototype implementation of TIJO is available at https://github.com/SRI-CSL/TIJO.
Text-to-Image Diffusion Models can be Easily Backdoored through Multimodal Data Poisoning
With the help of conditioning mechanisms, the state-of-the-art diffusion models have achieved tremendous success in guided image generation, particularly in text-to-image synthesis. To gain a better understanding of the training process and potential risks of text-to-image synthesis, we perform a systematic investigation of backdoor attack on text-to-image diffusion models and propose BadT2I, a general multimodal backdoor attack framework that tampers with image synthesis in diverse semantic levels. Specifically, we perform backdoor attacks on three levels of the vision semantics: Pixel-Backdoor, Object-Backdoor and Style-Backdoor. By utilizing a regularization loss, our methods efficiently inject backdoors into a large-scale text-to-image diffusion model while preserving its utility with benign inputs. We conduct empirical experiments on Stable Diffusion, the widely-used text-to-image diffusion model, demonstrating that the large-scale diffusion model can be easily backdoored within a few fine-tuning steps. We conduct additional experiments to explore the impact of different types of textual triggers. Besides, we discuss the backdoor persistence during further training, the findings of which provide insights for the development of backdoor defense methods.
Defending Our Privacy With Backdoors
The proliferation of large AI models trained on uncurated, often sensitive web-scraped data has raised significant privacy concerns. One of the concerns is that adversaries can extract information about the training data using privacy attacks. Unfortunately, the task of removing specific information from the models without sacrificing performance is not straightforward and has proven to be challenging. We propose a rather easy yet effective defense based on backdoor attacks to remove private information such as names of individuals from models, and focus in this work on text encoders. Specifically, through strategic insertion of backdoors, we align the embeddings of sensitive phrases with those of neutral terms-"a person" instead of the person's name. Our empirical results demonstrate the effectiveness of our backdoor-based defense on CLIP by assessing its performance using a specialized privacy attack for zero-shot classifiers. Our approach provides not only a new "dual-use" perspective on backdoor attacks, but also presents a promising avenue to enhance the privacy of individuals within models trained on uncurated web-scraped data.
BackdoorBench: A Comprehensive Benchmark of Backdoor Learning
Backdoor learning is an emerging and vital topic for studying deep neural networks' vulnerability (DNNs). Many pioneering backdoor attack and defense methods are being proposed, successively or concurrently, in the status of a rapid arms race. However, we find that the evaluations of new methods are often unthorough to verify their claims and accurate performance, mainly due to the rapid development, diverse settings, and the difficulties of implementation and reproducibility. Without thorough evaluations and comparisons, it is not easy to track the current progress and design the future development roadmap of the literature. To alleviate this dilemma, we build a comprehensive benchmark of backdoor learning called BackdoorBench. It consists of an extensible modular-based codebase (currently including implementations of 8 state-of-the-art (SOTA) attacks and 9 SOTA defense algorithms) and a standardized protocol of complete backdoor learning. We also provide comprehensive evaluations of every pair of 8 attacks against 9 defenses, with 5 poisoning ratios, based on 5 models and 4 datasets, thus 8,000 pairs of evaluations in total. We present abundant analysis from different perspectives about these 8,000 evaluations, studying the effects of different factors in backdoor learning. All codes and evaluations of BackdoorBench are publicly available at https://backdoorbench.github.io.
Single Image Backdoor Inversion via Robust Smoothed Classifiers
Backdoor inversion, the process of finding a backdoor trigger inserted into a machine learning model, has become the pillar of many backdoor detection and defense methods. Previous works on backdoor inversion often recover the backdoor through an optimization process to flip a support set of clean images into the target class. However, it is rarely studied and understood how large this support set should be to recover a successful backdoor. In this work, we show that one can reliably recover the backdoor trigger with as few as a single image. Specifically, we propose the SmoothInv method, which first constructs a robust smoothed version of the backdoored classifier and then performs guided image synthesis towards the target class to reveal the backdoor pattern. SmoothInv requires neither an explicit modeling of the backdoor via a mask variable, nor any complex regularization schemes, which has become the standard practice in backdoor inversion methods. We perform both quantitaive and qualitative study on backdoored classifiers from previous published backdoor attacks. We demonstrate that compared to existing methods, SmoothInv is able to recover successful backdoors from single images, while maintaining high fidelity to the original backdoor. We also show how we identify the target backdoored class from the backdoored classifier. Last, we propose and analyze two countermeasures to our approach and show that SmoothInv remains robust in the face of an adaptive attacker. Our code is available at https://github.com/locuslab/smoothinv .
DemonAgent: Dynamically Encrypted Multi-Backdoor Implantation Attack on LLM-based Agent
As LLM-based agents become increasingly prevalent, backdoors can be implanted into agents through user queries or environment feedback, raising critical concerns regarding safety vulnerabilities. However, backdoor attacks are typically detectable by safety audits that analyze the reasoning process of agents. To this end, we propose a novel backdoor implantation strategy called Dynamically Encrypted Multi-Backdoor Implantation Attack. Specifically, we introduce dynamic encryption, which maps the backdoor into benign content, effectively circumventing safety audits. To enhance stealthiness, we further decompose the backdoor into multiple sub-backdoor fragments. Based on these advancements, backdoors are allowed to bypass safety audits significantly. Additionally, we present AgentBackdoorEval, a dataset designed for the comprehensive evaluation of agent backdoor attacks. Experimental results across multiple datasets demonstrate that our method achieves an attack success rate nearing 100\% while maintaining a detection rate of 0\%, illustrating its effectiveness in evading safety audits. Our findings highlight the limitations of existing safety mechanisms in detecting advanced attacks, underscoring the urgent need for more robust defenses against backdoor threats. Code and data are available at https://github.com/whfeLingYu/DemonAgent.
The Perils of Learning From Unlabeled Data: Backdoor Attacks on Semi-supervised Learning
Semi-supervised machine learning (SSL) is gaining popularity as it reduces the cost of training ML models. It does so by using very small amounts of (expensive, well-inspected) labeled data and large amounts of (cheap, non-inspected) unlabeled data. SSL has shown comparable or even superior performances compared to conventional fully-supervised ML techniques. In this paper, we show that the key feature of SSL that it can learn from (non-inspected) unlabeled data exposes SSL to strong poisoning attacks. In fact, we argue that, due to its reliance on non-inspected unlabeled data, poisoning is a much more severe problem in SSL than in conventional fully-supervised ML. Specifically, we design a backdoor poisoning attack on SSL that can be conducted by a weak adversary with no knowledge of target SSL pipeline. This is unlike prior poisoning attacks in fully-supervised settings that assume strong adversaries with practically-unrealistic capabilities. We show that by poisoning only 0.2% of the unlabeled training data, our attack can cause misclassification of more than 80% of test inputs (when they contain the adversary's backdoor trigger). Our attacks remain effective across twenty combinations of benchmark datasets and SSL algorithms, and even circumvent the state-of-the-art defenses against backdoor attacks. Our work raises significant concerns about the practical utility of existing SSL algorithms.
Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents
Leveraging the rapid development of Large Language Models LLMs, LLM-based agents have been developed to handle various real-world applications, including finance, healthcare, and shopping, etc. It is crucial to ensure the reliability and security of LLM-based agents during applications. However, the safety issues of LLM-based agents are currently under-explored. In this work, we take the first step to investigate one of the typical safety threats, backdoor attack, to LLM-based agents. We first formulate a general framework of agent backdoor attacks, then we present a thorough analysis on the different forms of agent backdoor attacks. Specifically, from the perspective of the final attacking outcomes, the attacker can either choose to manipulate the final output distribution, or only introduce malicious behavior in the intermediate reasoning process, while keeping the final output correct. Furthermore, the former category can be divided into two subcategories based on trigger locations: the backdoor trigger can be hidden either in the user query or in an intermediate observation returned by the external environment. We propose the corresponding data poisoning mechanisms to implement the above variations of agent backdoor attacks on two typical agent tasks, web shopping and tool utilization. Extensive experiments show that LLM-based agents suffer severely from backdoor attacks, indicating an urgent need for further research on the development of defenses against backdoor attacks on LLM-based agents. Warning: This paper may contain biased content.
BaDExpert: Extracting Backdoor Functionality for Accurate Backdoor Input Detection
We present a novel defense, against backdoor attacks on Deep Neural Networks (DNNs), wherein adversaries covertly implant malicious behaviors (backdoors) into DNNs. Our defense falls within the category of post-development defenses that operate independently of how the model was generated. The proposed defense is built upon a novel reverse engineering approach that can directly extract backdoor functionality of a given backdoored model to a backdoor expert model. The approach is straightforward -- finetuning the backdoored model over a small set of intentionally mislabeled clean samples, such that it unlearns the normal functionality while still preserving the backdoor functionality, and thus resulting in a model (dubbed a backdoor expert model) that can only recognize backdoor inputs. Based on the extracted backdoor expert model, we show the feasibility of devising highly accurate backdoor input detectors that filter out the backdoor inputs during model inference. Further augmented by an ensemble strategy with a finetuned auxiliary model, our defense, BaDExpert (Backdoor Input Detection with Backdoor Expert), effectively mitigates 17 SOTA backdoor attacks while minimally impacting clean utility. The effectiveness of BaDExpert has been verified on multiple datasets (CIFAR10, GTSRB and ImageNet) across various model architectures (ResNet, VGG, MobileNetV2 and Vision Transformer).
Attack as Defense: Run-time Backdoor Implantation for Image Content Protection
As generative models achieve great success, tampering and modifying the sensitive image contents (i.e., human faces, artist signatures, commercial logos, etc.) have induced a significant threat with social impact. The backdoor attack is a method that implants vulnerabilities in a target model, which can be activated through a trigger. In this work, we innovatively prevent the abuse of image content modification by implanting the backdoor into image-editing models. Once the protected sensitive content on an image is modified by an editing model, the backdoor will be triggered, making the editing fail. Unlike traditional backdoor attacks that use data poisoning, to enable protection on individual images and eliminate the need for model training, we developed the first framework for run-time backdoor implantation, which is both time- and resource- efficient. We generate imperceptible perturbations on the images to inject the backdoor and define the protected area as the only backdoor trigger. Editing other unprotected insensitive areas will not trigger the backdoor, which minimizes the negative impact on legal image modifications. Evaluations with state-of-the-art image editing models show that our protective method can increase the CLIP-FID of generated images from 12.72 to 39.91, or reduce the SSIM from 0.503 to 0.167 when subjected to malicious editing. At the same time, our method exhibits minimal impact on benign editing, which demonstrates the efficacy of our proposed framework. The proposed run-time backdoor can also achieve effective protection on the latest diffusion models. Code are available.
FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated Learning
Federated Learning (FL) is a distributed learning paradigm that enables different parties to train a model together for high quality and strong privacy protection. In this scenario, individual participants may get compromised and perform backdoor attacks by poisoning the data (or gradients). Existing work on robust aggregation and certified FL robustness does not study how hardening benign clients can affect the global model (and the malicious clients). In this work, we theoretically analyze the connection among cross-entropy loss, attack success rate, and clean accuracy in this setting. Moreover, we propose a trigger reverse engineering based defense and show that our method can achieve robustness improvement with guarantee (i.e., reducing the attack success rate) without affecting benign accuracy. We conduct comprehensive experiments across different datasets and attack settings. Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks. Code is available at https://github.com/KaiyuanZh/FLIP.
Demystifying Poisoning Backdoor Attacks from a Statistical Perspective
The growing dependence on machine learning in real-world applications emphasizes the importance of understanding and ensuring its safety. Backdoor attacks pose a significant security risk due to their stealthy nature and potentially serious consequences. Such attacks involve embedding triggers within a learning model with the intention of causing malicious behavior when an active trigger is present while maintaining regular functionality without it. This paper evaluates the effectiveness of any backdoor attack incorporating a constant trigger, by establishing tight lower and upper boundaries for the performance of the compromised model on both clean and backdoor test data. The developed theory answers a series of fundamental but previously underexplored problems, including (1) what are the determining factors for a backdoor attack's success, (2) what is the direction of the most effective backdoor attack, and (3) when will a human-imperceptible trigger succeed. Our derived understanding applies to both discriminative and generative models. We also demonstrate the theory by conducting experiments using benchmark datasets and state-of-the-art backdoor attack scenarios.
ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks
Early backdoor attacks against machine learning set off an arms race in attack and defence development. Defences have since appeared demonstrating some ability to detect backdoors in models or even remove them. These defences work by inspecting the training data, the model, or the integrity of the training procedure. In this work, we show that backdoors can be added during compilation, circumventing any safeguards in the data preparation and model training stages. As an illustration, the attacker can insert weight-based backdoors during the hardware compilation step that will not be detected by any training or data-preparation process. Next, we demonstrate that some backdoors, such as ImpNet, can only be reliably detected at the stage where they are inserted and removing them anywhere else presents a significant challenge. We conclude that machine-learning model security requires assurance of provenance along the entire technical pipeline, including the data, model architecture, compiler, and hardware specification.
Leveraging Diffusion-Based Image Variations for Robust Training on Poisoned Data
Backdoor attacks pose a serious security threat for training neural networks as they surreptitiously introduce hidden functionalities into a model. Such backdoors remain silent during inference on clean inputs, evading detection due to inconspicuous behavior. However, once a specific trigger pattern appears in the input data, the backdoor activates, causing the model to execute its concealed function. Detecting such poisoned samples within vast datasets is virtually impossible through manual inspection. To address this challenge, we propose a novel approach that enables model training on potentially poisoned datasets by utilizing the power of recent diffusion models. Specifically, we create synthetic variations of all training samples, leveraging the inherent resilience of diffusion models to potential trigger patterns in the data. By combining this generative approach with knowledge distillation, we produce student models that maintain their general performance on the task while exhibiting robust resistance to backdoor triggers.
Backdoor Federated Learning by Poisoning Backdoor-Critical Layers
Federated learning (FL) has been widely deployed to enable machine learning training on sensitive data across distributed devices. However, the decentralized learning paradigm and heterogeneity of FL further extend the attack surface for backdoor attacks. Existing FL attack and defense methodologies typically focus on the whole model. None of them recognizes the existence of backdoor-critical (BC) layers-a small subset of layers that dominate the model vulnerabilities. Attacking the BC layers achieves equivalent effects as attacking the whole model but at a far smaller chance of being detected by state-of-the-art (SOTA) defenses. This paper proposes a general in-situ approach that identifies and verifies BC layers from the perspective of attackers. Based on the identified BC layers, we carefully craft a new backdoor attack methodology that adaptively seeks a fundamental balance between attacking effects and stealthiness under various defense strategies. Extensive experiments show that our BC layer-aware backdoor attacks can successfully backdoor FL under seven SOTA defenses with only 10% malicious clients and outperform the latest backdoor attack methods.
Adversarial Feature Map Pruning for Backdoor
Deep neural networks have been widely used in many critical applications, such as autonomous vehicles and medical diagnosis. However, their security is threatened by backdoor attacks, which are achieved by adding artificial patterns to specific training data. Existing defense strategies primarily focus on using reverse engineering to reproduce the backdoor trigger generated by attackers and subsequently repair the DNN model by adding the trigger into inputs and fine-tuning the model with ground-truth labels. However, once the trigger generated by the attackers is complex and invisible, the defender cannot reproduce the trigger successfully then the DNN model will not be repaired, as the trigger is not effectively removed. In this work, we propose Adversarial Feature Map Pruning for Backdoor (FMP) to mitigate backdoor from the DNN. Unlike existing defense strategies, which focus on reproducing backdoor triggers, FMP attempts to prune backdoor feature maps, which are trained to extract backdoor information from inputs. After pruning these backdoor feature maps, FMP will fine-tune the model with a secure subset of training data. Our experiments demonstrate that, compared to existing defense strategies, FMP can effectively reduce the Attack Success Rate (ASR) even against the most complex and invisible attack triggers (e.g., FMP decreases the ASR to 2.86\% in CIFAR10, which is 19.2\% to 65.41\% lower than baselines). Second, unlike conventional defense methods that tend to exhibit low robust accuracy (that is, the accuracy of the model on poisoned data), FMP achieves a higher RA, indicating its superiority in maintaining model performance while mitigating the effects of backdoor attacks (e.g., FMP obtains 87.40\% RA in CIFAR10). Our code is publicly available at: https://github.com/retsuh-bqw/FMP.
Backdoor Contrastive Learning via Bi-level Trigger Optimization
Contrastive Learning (CL) has attracted enormous attention due to its remarkable capability in unsupervised representation learning. However, recent works have revealed the vulnerability of CL to backdoor attacks: the feature extractor could be misled to embed backdoored data close to an attack target class, thus fooling the downstream predictor to misclassify it as the target. Existing attacks usually adopt a fixed trigger pattern and poison the training set with trigger-injected data, hoping for the feature extractor to learn the association between trigger and target class. However, we find that such fixed trigger design fails to effectively associate trigger-injected data with target class in the embedding space due to special CL mechanisms, leading to a limited attack success rate (ASR). This phenomenon motivates us to find a better backdoor trigger design tailored for CL framework. In this paper, we propose a bi-level optimization approach to achieve this goal, where the inner optimization simulates the CL dynamics of a surrogate victim, and the outer optimization enforces the backdoor trigger to stay close to the target throughout the surrogate CL procedure. Extensive experiments show that our attack can achieve a higher attack success rate (e.g., 99% ASR on ImageNet-100) with a very low poisoning rate (1%). Besides, our attack can effectively evade existing state-of-the-art defenses. Code is available at: https://github.com/SWY666/SSL-backdoor-BLTO.
Defending Against Patch-based Backdoor Attacks on Self-Supervised Learning
Recently, self-supervised learning (SSL) was shown to be vulnerable to patch-based data poisoning backdoor attacks. It was shown that an adversary can poison a small part of the unlabeled data so that when a victim trains an SSL model on it, the final model will have a backdoor that the adversary can exploit. This work aims to defend self-supervised learning against such attacks. We use a three-step defense pipeline, where we first train a model on the poisoned data. In the second step, our proposed defense algorithm (PatchSearch) uses the trained model to search the training data for poisoned samples and removes them from the training set. In the third step, a final model is trained on the cleaned-up training set. Our results show that PatchSearch is an effective defense. As an example, it improves a model's accuracy on images containing the trigger from 38.2% to 63.7% which is very close to the clean model's accuracy, 64.6%. Moreover, we show that PatchSearch outperforms baselines and state-of-the-art defense approaches including those using additional clean, trusted data. Our code is available at https://github.com/UCDvision/PatchSearch
Instructions as Backdoors: Backdoor Vulnerabilities of Instruction Tuning for Large Language Models
Instruction-tuned models are trained on crowdsourcing datasets with task instructions to achieve superior performance. However, in this work we raise security concerns about this training paradigm. Our studies demonstrate that an attacker can inject backdoors by issuing very few malicious instructions among thousands of gathered data and control model behavior through data poisoning, without even the need of modifying data instances or labels themselves. Through such instruction attacks, the attacker can achieve over 90% attack success rate across four commonly used NLP datasets, and cause persistent backdoors that are easily transferred to 15 diverse datasets zero-shot. In this way, the attacker can directly apply poisoned instructions designed for one dataset on many other datasets. Moreover, the poisoned model cannot be cured by continual learning. Lastly, instruction attacks show resistance to existing inference-time defense. These findings highlight the need for more robust defenses against data poisoning attacks in instructiontuning models and underscore the importance of ensuring data quality in instruction crowdsourcing.
BadChain: Backdoor Chain-of-Thought Prompting for Large Language Models
Large language models (LLMs) are shown to benefit from chain-of-thought (COT) prompting, particularly when tackling tasks that require systematic reasoning processes. On the other hand, COT prompting also poses new vulnerabilities in the form of backdoor attacks, wherein the model will output unintended malicious content under specific backdoor-triggered conditions during inference. Traditional methods for launching backdoor attacks involve either contaminating the training dataset with backdoored instances or directly manipulating the model parameters during deployment. However, these approaches are not practical for commercial LLMs that typically operate via API access. In this paper, we propose BadChain, the first backdoor attack against LLMs employing COT prompting, which does not require access to the training dataset or model parameters and imposes low computational overhead. BadChain leverages the inherent reasoning capabilities of LLMs by inserting a backdoor reasoning step into the sequence of reasoning steps of the model output, thereby altering the final response when a backdoor trigger exists in the query prompt. Empirically, we show the effectiveness of BadChain for two COT strategies across four LLMs (Llama2, GPT-3.5, PaLM2, and GPT-4) and six complex benchmark tasks encompassing arithmetic, commonsense, and symbolic reasoning. Moreover, we show that LLMs endowed with stronger reasoning capabilities exhibit higher susceptibility to BadChain, exemplified by a high average attack success rate of 97.0% across the six benchmark tasks on GPT-4. Finally, we propose two defenses based on shuffling and demonstrate their overall ineffectiveness against BadChain. Therefore, BadChain remains a severe threat to LLMs, underscoring the urgency for the development of robust and effective future defenses.
An Embarrassingly Simple Backdoor Attack on Self-supervised Learning
As a new paradigm in machine learning, self-supervised learning (SSL) is capable of learning high-quality representations of complex data without relying on labels. In addition to eliminating the need for labeled data, research has found that SSL improves the adversarial robustness over supervised learning since lacking labels makes it more challenging for adversaries to manipulate model predictions. However, the extent to which this robustness superiority generalizes to other types of attacks remains an open question. We explore this question in the context of backdoor attacks. Specifically, we design and evaluate CTRL, an embarrassingly simple yet highly effective self-supervised backdoor attack. By only polluting a tiny fraction of training data (<= 1%) with indistinguishable poisoning samples, CTRL causes any trigger-embedded input to be misclassified to the adversary's designated class with a high probability (>= 99%) at inference time. Our findings suggest that SSL and supervised learning are comparably vulnerable to backdoor attacks. More importantly, through the lens of CTRL, we study the inherent vulnerability of SSL to backdoor attacks. With both empirical and analytical evidence, we reveal that the representation invariance property of SSL, which benefits adversarial robustness, may also be the very reason making \ssl highly susceptible to backdoor attacks. Our findings also imply that the existing defenses against supervised backdoor attacks are not easily retrofitted to the unique vulnerability of SSL.
Few-Shot Backdoor Attacks on Visual Object Tracking
Visual object tracking (VOT) has been widely adopted in mission-critical applications, such as autonomous driving and intelligent surveillance systems. In current practice, third-party resources such as datasets, backbone networks, and training platforms are frequently used to train high-performance VOT models. Whilst these resources bring certain convenience, they also introduce new security threats into VOT models. In this paper, we reveal such a threat where an adversary can easily implant hidden backdoors into VOT models by tempering with the training process. Specifically, we propose a simple yet effective few-shot backdoor attack (FSBA) that optimizes two losses alternately: 1) a feature loss defined in the hidden feature space, and 2) the standard tracking loss. We show that, once the backdoor is embedded into the target model by our FSBA, it can trick the model to lose track of specific objects even when the trigger only appears in one or a few frames. We examine our attack in both digital and physical-world settings and show that it can significantly degrade the performance of state-of-the-art VOT trackers. We also show that our attack is resistant to potential defenses, highlighting the vulnerability of VOT models to potential backdoor attacks.
Mitigating the Backdoor Effect for Multi-Task Model Merging via Safety-Aware Subspace
Model merging has gained significant attention as a cost-effective approach to integrate multiple single-task fine-tuned models into a unified one that can perform well on multiple tasks. However, existing model merging techniques primarily focus on resolving conflicts between task-specific models, they often overlook potential security threats, particularly the risk of backdoor attacks in the open-source model ecosystem. In this paper, we first investigate the vulnerabilities of existing model merging methods to backdoor attacks, identifying two critical challenges: backdoor succession and backdoor transfer. To address these issues, we propose a novel Defense-Aware Merging (DAM) approach that simultaneously mitigates task interference and backdoor vulnerabilities. Specifically, DAM employs a meta-learning-based optimization method with dual masks to identify a shared and safety-aware subspace for model merging. These masks are alternately optimized: the Task-Shared mask identifies common beneficial parameters across tasks, aiming to preserve task-specific knowledge while reducing interference, while the Backdoor-Detection mask isolates potentially harmful parameters to neutralize security threats. This dual-mask design allows us to carefully balance the preservation of useful knowledge and the removal of potential vulnerabilities. Compared to existing merging methods, DAM achieves a more favorable balance between performance and security, reducing the attack success rate by 2-10 percentage points while sacrificing only about 1% in accuracy. Furthermore, DAM exhibits robust performance and broad applicability across various types of backdoor attacks and the number of compromised models involved in the merging process. We will release the codes and models soon.
CleanGen: Mitigating Backdoor Attacks for Generation Tasks in Large Language Models
The remarkable performance of large language models (LLMs) in generation tasks has enabled practitioners to leverage publicly available models to power custom applications, such as chatbots and virtual assistants. However, the data used to train or fine-tune these LLMs is often undisclosed, allowing an attacker to compromise the data and inject backdoors into the models. In this paper, we develop a novel inference time defense, named CleanGen, to mitigate backdoor attacks for generation tasks in LLMs. CleanGenis a lightweight and effective decoding strategy that is compatible with the state-of-the-art (SOTA) LLMs. Our insight behind CleanGen is that compared to other LLMs, backdoored LLMs assign significantly higher probabilities to tokens representing the attacker-desired contents. These discrepancies in token probabilities enable CleanGen to identify suspicious tokens favored by the attacker and replace them with tokens generated by another LLM that is not compromised by the same attacker, thereby avoiding generation of attacker-desired content. We evaluate CleanGen against five SOTA backdoor attacks. Our results show that CleanGen achieves lower attack success rates (ASR) compared to five SOTA baseline defenses for all five backdoor attacks. Moreover, LLMs deploying CleanGen maintain helpfulness in their responses when serving benign user queries with minimal added computational overhead.
RAP: Robustness-Aware Perturbations for Defending against Backdoor Attacks on NLP Models
Backdoor attacks, which maliciously control a well-trained model's outputs of the instances with specific triggers, are recently shown to be serious threats to the safety of reusing deep neural networks (DNNs). In this work, we propose an efficient online defense mechanism based on robustness-aware perturbations. Specifically, by analyzing the backdoor training process, we point out that there exists a big gap of robustness between poisoned and clean samples. Motivated by this observation, we construct a word-based robustness-aware perturbation to distinguish poisoned samples from clean samples to defend against the backdoor attacks on natural language processing (NLP) models. Moreover, we give a theoretical analysis about the feasibility of our robustness-aware perturbation-based defense method. Experimental results on sentiment analysis and toxic detection tasks show that our method achieves better defending performance and much lower computational costs than existing online defense methods. Our code is available at https://github.com/lancopku/RAP.
MakeupAttack: Feature Space Black-box Backdoor Attack on Face Recognition via Makeup Transfer
Backdoor attacks pose a significant threat to the training process of deep neural networks (DNNs). As a widely-used DNN-based application in real-world scenarios, face recognition systems once implanted into the backdoor, may cause serious consequences. Backdoor research on face recognition is still in its early stages, and the existing backdoor triggers are relatively simple and visible. Furthermore, due to the perceptibility, diversity, and similarity of facial datasets, many state-of-the-art backdoor attacks lose effectiveness on face recognition tasks. In this work, we propose a novel feature space backdoor attack against face recognition via makeup transfer, dubbed MakeupAttack. In contrast to many feature space attacks that demand full access to target models, our method only requires model queries, adhering to black-box attack principles. In our attack, we design an iterative training paradigm to learn the subtle features of the proposed makeup-style trigger. Additionally, MakeupAttack promotes trigger diversity using the adaptive selection method, dispersing the feature distribution of malicious samples to bypass existing defense methods. Extensive experiments were conducted on two widely-used facial datasets targeting multiple models. The results demonstrate that our proposed attack method can bypass existing state-of-the-art defenses while maintaining effectiveness, robustness, naturalness, and stealthiness, without compromising model performance.
Fine-Tuning Is All You Need to Mitigate Backdoor Attacks
Backdoor attacks represent one of the major threats to machine learning models. Various efforts have been made to mitigate backdoors. However, existing defenses have become increasingly complex and often require high computational resources or may also jeopardize models' utility. In this work, we show that fine-tuning, one of the most common and easy-to-adopt machine learning training operations, can effectively remove backdoors from machine learning models while maintaining high model utility. Extensive experiments over three machine learning paradigms show that fine-tuning and our newly proposed super-fine-tuning achieve strong defense performance. Furthermore, we coin a new term, namely backdoor sequela, to measure the changes in model vulnerabilities to other attacks before and after the backdoor has been removed. Empirical evaluation shows that, compared to other defense methods, super-fine-tuning leaves limited backdoor sequela. We hope our results can help machine learning model owners better protect their models from backdoor threats. Also, it calls for the design of more advanced attacks in order to comprehensively assess machine learning models' backdoor vulnerabilities.
BackdoorLLM: A Comprehensive Benchmark for Backdoor Attacks on Large Language Models
Generative Large Language Models (LLMs) have made significant strides across various tasks, but they remain vulnerable to backdoor attacks, where specific triggers in the prompt cause the LLM to generate adversary-desired responses. While most backdoor research has focused on vision or text classification tasks, backdoor attacks in text generation have been largely overlooked. In this work, we introduce BackdoorLLM, the first comprehensive benchmark for studying backdoor attacks on LLMs. BackdoorLLM features: 1) a repository of backdoor benchmarks with a standardized training pipeline, 2) diverse attack strategies, including data poisoning, weight poisoning, hidden state attacks, and chain-of-thought attacks, 3) extensive evaluations with over 200 experiments on 8 attacks across 7 scenarios and 6 model architectures, and 4) key insights into the effectiveness and limitations of backdoors in LLMs. We hope BackdoorLLM will raise awareness of backdoor threats and contribute to advancing AI safety. The code is available at https://github.com/bboylyg/BackdoorLLM.
Hidden Killer: Invisible Textual Backdoor Attacks with Syntactic Trigger
Backdoor attacks are a kind of insidious security threat against machine learning models. After being injected with a backdoor in training, the victim model will produce adversary-specified outputs on the inputs embedded with predesigned triggers but behave properly on normal inputs during inference. As a sort of emergent attack, backdoor attacks in natural language processing (NLP) are investigated insufficiently. As far as we know, almost all existing textual backdoor attack methods insert additional contents into normal samples as triggers, which causes the trigger-embedded samples to be detected and the backdoor attacks to be blocked without much effort. In this paper, we propose to use the syntactic structure as the trigger in textual backdoor attacks. We conduct extensive experiments to demonstrate that the syntactic trigger-based attack method can achieve comparable attack performance (almost 100% success rate) to the insertion-based methods but possesses much higher invisibility and stronger resistance to defenses. These results also reveal the significant insidiousness and harmfulness of textual backdoor attacks. All the code and data of this paper can be obtained at https://github.com/thunlp/HiddenKiller.
Shortcuts Everywhere and Nowhere: Exploring Multi-Trigger Backdoor Attacks
Backdoor attacks have become a significant threat to the pre-training and deployment of deep neural networks (DNNs). Although numerous methods for detecting and mitigating backdoor attacks have been proposed, most rely on identifying and eliminating the ``shortcut" created by the backdoor, which links a specific source class to a target class. However, these approaches can be easily circumvented by designing multiple backdoor triggers that create shortcuts everywhere and therefore nowhere specific. In this study, we explore the concept of Multi-Trigger Backdoor Attacks (MTBAs), where multiple adversaries leverage different types of triggers to poison the same dataset. By proposing and investigating three types of multi-trigger attacks including parallel, sequential, and hybrid attacks, we demonstrate that 1) multiple triggers can coexist, overwrite, or cross-activate one another, and 2) MTBAs easily break the prevalent shortcut assumption underlying most existing backdoor detection/removal methods, rendering them ineffective. Given the security risk posed by MTBAs, we have created a multi-trigger backdoor poisoning dataset to facilitate future research on detecting and mitigating these attacks, and we also discuss potential defense strategies against MTBAs. Our code is available at https://github.com/bboylyg/Multi-Trigger-Backdoor-Attacks.
Deep Learning Model Security: Threats and Defenses
Deep learning has transformed AI applications but faces critical security challenges, including adversarial attacks, data poisoning, model theft, and privacy leakage. This survey examines these vulnerabilities, detailing their mechanisms and impact on model integrity and confidentiality. Practical implementations, including adversarial examples, label flipping, and backdoor attacks, are explored alongside defenses such as adversarial training, differential privacy, and federated learning, highlighting their strengths and limitations. Advanced methods like contrastive and self-supervised learning are presented for enhancing robustness. The survey concludes with future directions, emphasizing automated defenses, zero-trust architectures, and the security challenges of large AI models. A balanced approach to performance and security is essential for developing reliable deep learning systems.
Defending Pre-trained Language Models as Few-shot Learners against Backdoor Attacks
Pre-trained language models (PLMs) have demonstrated remarkable performance as few-shot learners. However, their security risks under such settings are largely unexplored. In this work, we conduct a pilot study showing that PLMs as few-shot learners are highly vulnerable to backdoor attacks while existing defenses are inadequate due to the unique challenges of few-shot scenarios. To address such challenges, we advocate MDP, a novel lightweight, pluggable, and effective defense for PLMs as few-shot learners. Specifically, MDP leverages the gap between the masking-sensitivity of poisoned and clean samples: with reference to the limited few-shot data as distributional anchors, it compares the representations of given samples under varying masking and identifies poisoned samples as ones with significant variations. We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness. The empirical evaluation using benchmark datasets and representative attacks validates the efficacy of MDP.
Agent Security Bench (ASB): Formalizing and Benchmarking Attacks and Defenses in LLM-based Agents
Although LLM-based agents, powered by Large Language Models (LLMs), can use external tools and memory mechanisms to solve complex real-world tasks, they may also introduce critical security vulnerabilities. However, the existing literature does not comprehensively evaluate attacks and defenses against LLM-based agents. To address this, we introduce Agent Security Bench (ASB), a comprehensive framework designed to formalize, benchmark, and evaluate the attacks and defenses of LLM-based agents, including 10 scenarios (e.g., e-commerce, autonomous driving, finance), 10 agents targeting the scenarios, over 400 tools, 23 different types of attack/defense methods, and 8 evaluation metrics. Based on ASB, we benchmark 10 prompt injection attacks, a memory poisoning attack, a novel Plan-of-Thought backdoor attack, a mixed attack, and 10 corresponding defenses across 13 LLM backbones with nearly 90,000 testing cases in total. Our benchmark results reveal critical vulnerabilities in different stages of agent operation, including system prompt, user prompt handling, tool usage, and memory retrieval, with the highest average attack success rate of 84.30\%, but limited effectiveness shown in current defenses, unveiling important works to be done in terms of agent security for the community. Our code can be found at https://github.com/agiresearch/ASB.
Stealthy and Persistent Unalignment on Large Language Models via Backdoor Injections
Recent developments in Large Language Models (LLMs) have manifested significant advancements. To facilitate safeguards against malicious exploitation, a body of research has concentrated on aligning LLMs with human preferences and inhibiting their generation of inappropriate content. Unfortunately, such alignments are often vulnerable: fine-tuning with a minimal amount of harmful data can easily unalign the target LLM. While being effective, such fine-tuning-based unalignment approaches also have their own limitations: (1) non-stealthiness, after fine-tuning, safety audits or red-teaming can easily expose the potential weaknesses of the unaligned models, thereby precluding their release/use. (2) non-persistence, the unaligned LLMs can be easily repaired through re-alignment, i.e., fine-tuning again with aligned data points. In this work, we show that it is possible to conduct stealthy and persistent unalignment on large language models via backdoor injections. We also provide a novel understanding on the relationship between the backdoor persistence and the activation pattern and further provide guidelines for potential trigger design. Through extensive experiments, we demonstrate that our proposed stealthy and persistent unalignment can successfully pass the safety evaluation while maintaining strong persistence against re-alignment defense.
Exploring Backdoor Vulnerabilities of Chat Models
Recent researches have shown that Large Language Models (LLMs) are susceptible to a security threat known as Backdoor Attack. The backdoored model will behave well in normal cases but exhibit malicious behaviours on inputs inserted with a specific backdoor trigger. Current backdoor studies on LLMs predominantly focus on instruction-tuned LLMs, while neglecting another realistic scenario where LLMs are fine-tuned on multi-turn conversational data to be chat models. Chat models are extensively adopted across various real-world scenarios, thus the security of chat models deserves increasing attention. Unfortunately, we point out that the flexible multi-turn interaction format instead increases the flexibility of trigger designs and amplifies the vulnerability of chat models to backdoor attacks. In this work, we reveal and achieve a novel backdoor attacking method on chat models by distributing multiple trigger scenarios across user inputs in different rounds, and making the backdoor be triggered only when all trigger scenarios have appeared in the historical conversations. Experimental results demonstrate that our method can achieve high attack success rates (e.g., over 90% ASR on Vicuna-7B) while successfully maintaining the normal capabilities of chat models on providing helpful responses to benign user requests. Also, the backdoor can not be easily removed by the downstream re-alignment, highlighting the importance of continued research and attention to the security concerns of chat models. Warning: This paper may contain toxic content.
Multi-metrics adaptively identifies backdoors in Federated learning
The decentralized and privacy-preserving nature of federated learning (FL) makes it vulnerable to backdoor attacks aiming to manipulate the behavior of the resulting model on specific adversary-chosen inputs. However, most existing defenses based on statistical differences take effect only against specific attacks, especially when the malicious gradients are similar to benign ones or the data are highly non-independent and identically distributed (non-IID). In this paper, we revisit the distance-based defense methods and discover that i) Euclidean distance becomes meaningless in high dimensions and ii) malicious gradients with diverse characteristics cannot be identified by a single metric. To this end, we present a simple yet effective defense strategy with multi-metrics and dynamic weighting to identify backdoors adaptively. Furthermore, our novel defense has no reliance on predefined assumptions over attack settings or data distributions and little impact on benign performance. To evaluate the effectiveness of our approach, we conduct comprehensive experiments on different datasets under various attack settings, where our method achieves the best defensive performance. For instance, we achieve the lowest backdoor accuracy of 3.06% under the difficult Edge-case PGD, showing significant superiority over previous defenses. The results also demonstrate that our method can be well-adapted to a wide range of non-IID degrees without sacrificing the benign performance.
T2IShield: Defending Against Backdoors on Text-to-Image Diffusion Models
While text-to-image diffusion models demonstrate impressive generation capabilities, they also exhibit vulnerability to backdoor attacks, which involve the manipulation of model outputs through malicious triggers. In this paper, for the first time, we propose a comprehensive defense method named T2IShield to detect, localize, and mitigate such attacks. Specifically, we find the "Assimilation Phenomenon" on the cross-attention maps caused by the backdoor trigger. Based on this key insight, we propose two effective backdoor detection methods: Frobenius Norm Threshold Truncation and Covariance Discriminant Analysis. Besides, we introduce a binary-search approach to localize the trigger within a backdoor sample and assess the efficacy of existing concept editing methods in mitigating backdoor attacks. Empirical evaluations on two advanced backdoor attack scenarios show the effectiveness of our proposed defense method. For backdoor sample detection, T2IShield achieves a detection F1 score of 88.9% with low computational cost. Furthermore, T2IShield achieves a localization F1 score of 86.4% and invalidates 99% poisoned samples. Codes are released at https://github.com/Robin-WZQ/T2IShield.
UMD: Unsupervised Model Detection for X2X Backdoor Attacks
Backdoor (Trojan) attack is a common threat to deep neural networks, where samples from one or more source classes embedded with a backdoor trigger will be misclassified to adversarial target classes. Existing methods for detecting whether a classifier is backdoor attacked are mostly designed for attacks with a single adversarial target (e.g., all-to-one attack). To the best of our knowledge, without supervision, no existing methods can effectively address the more general X2X attack with an arbitrary number of source classes, each paired with an arbitrary target class. In this paper, we propose UMD, the first Unsupervised Model Detection method that effectively detects X2X backdoor attacks via a joint inference of the adversarial (source, target) class pairs. In particular, we first define a novel transferability statistic to measure and select a subset of putative backdoor class pairs based on a proposed clustering approach. Then, these selected class pairs are jointly assessed based on an aggregation of their reverse-engineered trigger size for detection inference, using a robust and unsupervised anomaly detector we proposed. We conduct comprehensive evaluations on CIFAR-10, GTSRB, and Imagenette dataset, and show that our unsupervised UMD outperforms SOTA detectors (even with supervision) by 17%, 4%, and 8%, respectively, in terms of the detection accuracy against diverse X2X attacks. We also show the strong detection performance of UMD against several strong adaptive attacks.
Claim-Guided Textual Backdoor Attack for Practical Applications
Recent advances in natural language processing and the increased use of large language models have exposed new security vulnerabilities, such as backdoor attacks. Previous backdoor attacks require input manipulation after model distribution to activate the backdoor, posing limitations in real-world applicability. Addressing this gap, we introduce a novel Claim-Guided Backdoor Attack (CGBA), which eliminates the need for such manipulations by utilizing inherent textual claims as triggers. CGBA leverages claim extraction, clustering, and targeted training to trick models to misbehave on targeted claims without affecting their performance on clean data. CGBA demonstrates its effectiveness and stealthiness across various datasets and models, significantly enhancing the feasibility of practical backdoor attacks. Our code and data will be available at https://github.com/PaperCGBA/CGBA.
Combinational Backdoor Attack against Customized Text-to-Image Models
Recently, Text-to-Image (T2I) synthesis technology has made tremendous strides. Numerous representative T2I models have emerged and achieved promising application outcomes, such as DALL-E, Stable Diffusion, Imagen, etc. In practice, it has become increasingly popular for model developers to selectively adopt various pre-trained text encoders and conditional diffusion models from third-party platforms, integrating them to build customized (personalized) T2I models. However, such an adoption approach is vulnerable to backdoor attacks. In this work, we propose a Combinational Backdoor Attack against Customized T2I models (CBACT2I) targeting this application scenario. Different from previous backdoor attacks against T2I models, CBACT2I embeds the backdoor into the text encoder and the conditional diffusion model separately. The customized T2I model exhibits backdoor behaviors only when the backdoor text encoder is used in combination with the backdoor conditional diffusion model. These properties make CBACT2I more stealthy and flexible than prior backdoor attacks against T2I models. Extensive experiments demonstrate the effectiveness of CBACT2I with different backdoor triggers and different backdoor targets on the open-sourced Stable Diffusion model. This work reveals the backdoor vulnerabilities of customized T2I models and urges countermeasures to mitigate backdoor threats in this scenario.
Universal Jailbreak Backdoors from Poisoned Human Feedback
Reinforcement Learning from Human Feedback (RLHF) is used to align large language models to produce helpful and harmless responses. Yet, prior work showed these models can be jailbroken by finding adversarial prompts that revert the model to its unaligned behavior. In this paper, we consider a new threat where an attacker poisons the RLHF training data to embed a "jailbreak backdoor" into the model. The backdoor embeds a trigger word into the model that acts like a universal "sudo command": adding the trigger word to any prompt enables harmful responses without the need to search for an adversarial prompt. Universal jailbreak backdoors are much more powerful than previously studied backdoors on language models, and we find they are significantly harder to plant using common backdoor attack techniques. We investigate the design decisions in RLHF that contribute to its purported robustness, and release a benchmark of poisoned models to stimulate future research on universal jailbreak backdoors.
Competition Report: Finding Universal Jailbreak Backdoors in Aligned LLMs
Large language models are aligned to be safe, preventing users from generating harmful content like misinformation or instructions for illegal activities. However, previous work has shown that the alignment process is vulnerable to poisoning attacks. Adversaries can manipulate the safety training data to inject backdoors that act like a universal sudo command: adding the backdoor string to any prompt enables harmful responses from models that, otherwise, behave safely. Our competition, co-located at IEEE SaTML 2024, challenged participants to find universal backdoors in several large language models. This report summarizes the key findings and promising ideas for future research.
Universal Backdoor Attacks
Web-scraped datasets are vulnerable to data poisoning, which can be used for backdooring deep image classifiers during training. Since training on large datasets is expensive, a model is trained once and re-used many times. Unlike adversarial examples, backdoor attacks often target specific classes rather than any class learned by the model. One might expect that targeting many classes through a naive composition of attacks vastly increases the number of poison samples. We show this is not necessarily true and more efficient, universal data poisoning attacks exist that allow controlling misclassifications from any source class into any target class with a small increase in poison samples. Our idea is to generate triggers with salient characteristics that the model can learn. The triggers we craft exploit a phenomenon we call inter-class poison transferability, where learning a trigger from one class makes the model more vulnerable to learning triggers for other classes. We demonstrate the effectiveness and robustness of our universal backdoor attacks by controlling models with up to 6,000 classes while poisoning only 0.15% of the training dataset. Our source code is available at https://github.com/Ben-Schneider-code/Universal-Backdoor-Attacks.
Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training
Humans are capable of strategically deceptive behavior: behaving helpfully in most situations, but then behaving very differently in order to pursue alternative objectives when given the opportunity. If an AI system learned such a deceptive strategy, could we detect it and remove it using current state-of-the-art safety training techniques? To study this question, we construct proof-of-concept examples of deceptive behavior in large language models (LLMs). For example, we train models that write secure code when the prompt states that the year is 2023, but insert exploitable code when the stated year is 2024. We find that such backdoored behavior can be made persistent, so that it is not removed by standard safety training techniques, including supervised fine-tuning, reinforcement learning, and adversarial training (eliciting unsafe behavior and then training to remove it). The backdoored behavior is most persistent in the largest models and in models trained to produce chain-of-thought reasoning about deceiving the training process, with the persistence remaining even when the chain-of-thought is distilled away. Furthermore, rather than removing backdoors, we find that adversarial training can teach models to better recognize their backdoor triggers, effectively hiding the unsafe behavior. Our results suggest that, once a model exhibits deceptive behavior, standard techniques could fail to remove such deception and create a false impression of safety.
Chameleon: Adapting to Peer Images for Planting Durable Backdoors in Federated Learning
In a federated learning (FL) system, distributed clients upload their local models to a central server to aggregate into a global model. Malicious clients may plant backdoors into the global model through uploading poisoned local models, causing images with specific patterns to be misclassified into some target labels. Backdoors planted by current attacks are not durable, and vanish quickly once the attackers stop model poisoning. In this paper, we investigate the connection between the durability of FL backdoors and the relationships between benign images and poisoned images (i.e., the images whose labels are flipped to the target label during local training). Specifically, benign images with the original and the target labels of the poisoned images are found to have key effects on backdoor durability. Consequently, we propose a novel attack, Chameleon, which utilizes contrastive learning to further amplify such effects towards a more durable backdoor. Extensive experiments demonstrate that Chameleon significantly extends the backdoor lifespan over baselines by 1.2times sim 4times, for a wide range of image datasets, backdoor types, and model architectures.
PolicyCleanse: Backdoor Detection and Mitigation in Reinforcement Learning
While real-world applications of reinforcement learning are becoming popular, the security and robustness of RL systems are worthy of more attention and exploration. In particular, recent works have revealed that, in a multi-agent RL environment, backdoor trigger actions can be injected into a victim agent (a.k.a. Trojan agent), which can result in a catastrophic failure as soon as it sees the backdoor trigger action. To ensure the security of RL agents against malicious backdoors, in this work, we propose the problem of Backdoor Detection in a multi-agent competitive reinforcement learning system, with the objective of detecting Trojan agents as well as the corresponding potential trigger actions, and further trying to mitigate their Trojan behavior. In order to solve this problem, we propose PolicyCleanse that is based on the property that the activated Trojan agents accumulated rewards degrade noticeably after several timesteps. Along with PolicyCleanse, we also design a machine unlearning-based approach that can effectively mitigate the detected backdoor. Extensive experiments demonstrate that the proposed methods can accurately detect Trojan agents, and outperform existing backdoor mitigation baseline approaches by at least 3% in winning rate across various types of agents and environments.
Be Careful about Poisoned Word Embeddings: Exploring the Vulnerability of the Embedding Layers in NLP Models
Recent studies have revealed a security threat to natural language processing (NLP) models, called the Backdoor Attack. Victim models can maintain competitive performance on clean samples while behaving abnormally on samples with a specific trigger word inserted. Previous backdoor attacking methods usually assume that attackers have a certain degree of data knowledge, either the dataset which users would use or proxy datasets for a similar task, for implementing the data poisoning procedure. However, in this paper, we find that it is possible to hack the model in a data-free way by modifying one single word embedding vector, with almost no accuracy sacrificed on clean samples. Experimental results on sentiment analysis and sentence-pair classification tasks show that our method is more efficient and stealthier. We hope this work can raise the awareness of such a critical security risk hidden in the embedding layers of NLP models. Our code is available at https://github.com/lancopku/Embedding-Poisoning.
Efficient Backdoor Attacks for Deep Neural Networks in Real-world Scenarios
Recent deep neural networks (DNNs) have come to rely on vast amounts of training data, providing an opportunity for malicious attackers to exploit and contaminate the data to carry out backdoor attacks. These attacks significantly undermine the reliability of DNNs. However, existing backdoor attack methods make unrealistic assumptions, assuming that all training data comes from a single source and that attackers have full access to the training data. In this paper, we address this limitation by introducing a more realistic attack scenario where victims collect data from multiple sources, and attackers cannot access the complete training data. We refer to this scenario as data-constrained backdoor attacks. In such cases, previous attack methods suffer from severe efficiency degradation due to the entanglement between benign and poisoning features during the backdoor injection process. To tackle this problem, we propose a novel approach that leverages the pre-trained Contrastive Language-Image Pre-Training (CLIP) model. We introduce three CLIP-based technologies from two distinct streams: Clean Feature Suppression, which aims to suppress the influence of clean features to enhance the prominence of poisoning features, and Poisoning Feature Augmentation, which focuses on augmenting the presence and impact of poisoning features to effectively manipulate the model's behavior. To evaluate the effectiveness, harmlessness to benign accuracy, and stealthiness of our method, we conduct extensive experiments on 3 target models, 3 datasets, and over 15 different settings. The results demonstrate remarkable improvements, with some settings achieving over 100% improvement compared to existing attacks in data-constrained scenarios. Our research contributes to addressing the limitations of existing methods and provides a practical and effective solution for data-constrained backdoor attacks.
Trading Devil: Robust backdoor attack via Stochastic investment models and Bayesian approach
With the growing use of voice-activated systems and speech recognition technologies, the danger of backdoor attacks on audio data has grown significantly. This research looks at a specific type of attack, known as a Stochastic investment-based backdoor attack (MarketBack), in which adversaries strategically manipulate the stylistic properties of audio to fool speech recognition systems. The security and integrity of machine learning models are seriously threatened by backdoor attacks, in order to maintain the reliability of audio applications and systems, the identification of such attacks becomes crucial in the context of audio data. Experimental results demonstrated that MarketBack is feasible to achieve an average attack success rate close to 100% in seven victim models when poisoning less than 1% of the training data.
Influencer Backdoor Attack on Semantic Segmentation
When a small number of poisoned samples are injected into the training dataset of a deep neural network, the network can be induced to exhibit malicious behavior during inferences, which poses potential threats to real-world applications. While they have been intensively studied in classification, backdoor attacks on semantic segmentation have been largely overlooked. Unlike classification, semantic segmentation aims to classify every pixel within a given image. In this work, we explore backdoor attacks on segmentation models to misclassify all pixels of a victim class by injecting a specific trigger on non-victim pixels during inferences, which is dubbed Influencer Backdoor Attack (IBA). IBA is expected to maintain the classification accuracy of non-victim pixels and mislead classifications of all victim pixels in every single inference and could be easily applied to real-world scenes. Based on the context aggregation ability of segmentation models, we proposed a simple, yet effective, Nearest-Neighbor trigger injection strategy. We also introduce an innovative Pixel Random Labeling strategy which maintains optimal performance even when the trigger is placed far from the victim pixels. Our extensive experiments reveal that current segmentation models do suffer from backdoor attacks, demonstrate IBA real-world applicability, and show that our proposed techniques can further increase attack performance.
BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions. The high dimensionality of potential triggers in the token space and the diverse range of malicious behaviors make this a critical challenge. We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space. Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations. Experiments show BEEAR reduces the success rate of RLHF time backdoor attacks from >95% to <1% and from 47% to 0% for instruction-tuning time backdoors targeting malicious code generation, without compromising model utility. Requiring only defender-defined safe and unwanted behaviors, BEEAR represents a step towards practical defenses against safety backdoors in LLMs, providing a foundation for further advancements in AI safety and security.
Distilling Cognitive Backdoor Patterns within an Image
This paper proposes a simple method to distill and detect backdoor patterns within an image: Cognitive Distillation (CD). The idea is to extract the "minimal essence" from an input image responsible for the model's prediction. CD optimizes an input mask to extract a small pattern from the input image that can lead to the same model output (i.e., logits or deep features). The extracted pattern can help understand the cognitive mechanism of a model on clean vs. backdoor images and is thus called a Cognitive Pattern (CP). Using CD and the distilled CPs, we uncover an interesting phenomenon of backdoor attacks: despite the various forms and sizes of trigger patterns used by different attacks, the CPs of backdoor samples are all surprisingly and suspiciously small. One thus can leverage the learned mask to detect and remove backdoor examples from poisoned training datasets. We conduct extensive experiments to show that CD can robustly detect a wide range of advanced backdoor attacks. We also show that CD can potentially be applied to help detect potential biases from face datasets. Code is available at https://github.com/HanxunH/CognitiveDistillation.
Rethinking Backdoor Attacks on Dataset Distillation: A Kernel Method Perspective
Dataset distillation offers a potential means to enhance data efficiency in deep learning. Recent studies have shown its ability to counteract backdoor risks present in original training samples. In this study, we delve into the theoretical aspects of backdoor attacks and dataset distillation based on kernel methods. We introduce two new theory-driven trigger pattern generation methods specialized for dataset distillation. Following a comprehensive set of analyses and experiments, we show that our optimization-based trigger design framework informs effective backdoor attacks on dataset distillation. Notably, datasets poisoned by our designed trigger prove resilient against conventional backdoor attack detection and mitigation methods. Our empirical results validate that the triggers developed using our approaches are proficient at executing resilient backdoor attacks.
AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases
LLM agents have demonstrated remarkable performance across various applications, primarily due to their advanced capabilities in reasoning, utilizing external knowledge and tools, calling APIs, and executing actions to interact with environments. Current agents typically utilize a memory module or a retrieval-augmented generation (RAG) mechanism, retrieving past knowledge and instances with similar embeddings from knowledge bases to inform task planning and execution. However, the reliance on unverified knowledge bases raises significant concerns about their safety and trustworthiness. To uncover such vulnerabilities, we propose a novel red teaming approach AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base. In particular, we form the trigger generation process as a constrained optimization to optimize backdoor triggers by mapping the triggered instances to a unique embedding space, so as to ensure that whenever a user instruction contains the optimized backdoor trigger, the malicious demonstrations are retrieved from the poisoned memory or knowledge base with high probability. In the meantime, benign instructions without the trigger will still maintain normal performance. Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning, and the optimized backdoor trigger exhibits superior transferability, in-context coherence, and stealthiness. Extensive experiments demonstrate AgentPoison's effectiveness in attacking three types of real-world LLM agents: RAG-based autonomous driving agent, knowledge-intensive QA agent, and healthcare EHRAgent. On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance (less than 1%) with a poison rate less than 0.1%.
Revisiting Data-Free Knowledge Distillation with Poisoned Teachers
Data-free knowledge distillation (KD) helps transfer knowledge from a pre-trained model (known as the teacher model) to a smaller model (known as the student model) without access to the original training data used for training the teacher model. However, the security of the synthetic or out-of-distribution (OOD) data required in data-free KD is largely unknown and under-explored. In this work, we make the first effort to uncover the security risk of data-free KD w.r.t. untrusted pre-trained models. We then propose Anti-Backdoor Data-Free KD (ABD), the first plug-in defensive method for data-free KD methods to mitigate the chance of potential backdoors being transferred. We empirically evaluate the effectiveness of our proposed ABD in diminishing transferred backdoor knowledge while maintaining compatible downstream performances as the vanilla KD. We envision this work as a milestone for alarming and mitigating the potential backdoors in data-free KD. Codes are released at https://github.com/illidanlab/ABD.
Zero-Day Backdoor Attack against Text-to-Image Diffusion Models via Personalization
Although recent personalization methods have democratized high-resolution image synthesis by enabling swift concept acquisition with minimal examples and lightweight computation, they also present an exploitable avenue for high accessible backdoor attacks. This paper investigates a critical and unexplored aspect of text-to-image (T2I) diffusion models - their potential vulnerability to backdoor attacks via personalization. Our study focuses on a zero-day backdoor vulnerability prevalent in two families of personalization methods, epitomized by Textual Inversion and DreamBooth.Compared to traditional backdoor attacks, our proposed method can facilitate more precise, efficient, and easily accessible attacks with a lower barrier to entry. We provide a comprehensive review of personalization in T2I diffusion models, highlighting the operation and exploitation potential of this backdoor vulnerability. To be specific, by studying the prompt processing of Textual Inversion and DreamBooth, we have devised dedicated backdoor attacks according to the different ways of dealing with unseen tokens and analyzed the influence of triggers and concept images on the attack effect. Our empirical study has shown that the nouveau-token backdoor attack has better attack performance while legacy-token backdoor attack is potentially harder to defend.
BadEdit: Backdooring large language models by model editing
Mainstream backdoor attack methods typically demand substantial tuning data for poisoning, limiting their practicality and potentially degrading the overall performance when applied to Large Language Models (LLMs). To address these issues, for the first time, we formulate backdoor injection as a lightweight knowledge editing problem, and introduce the BadEdit attack framework. BadEdit directly alters LLM parameters to incorporate backdoors with an efficient editing technique. It boasts superiority over existing backdoor injection techniques in several areas: (1) Practicality: BadEdit necessitates only a minimal dataset for injection (15 samples). (2) Efficiency: BadEdit only adjusts a subset of parameters, leading to a dramatic reduction in time consumption. (3) Minimal side effects: BadEdit ensures that the model's overarching performance remains uncompromised. (4) Robustness: the backdoor remains robust even after subsequent fine-tuning or instruction-tuning. Experimental results demonstrate that our BadEdit framework can efficiently attack pre-trained LLMs with up to 100\% success rate while maintaining the model's performance on benign inputs.
TrojanEdit: Backdooring Text-Based Image Editing Models
As diffusion models have achieved success in image generation tasks, many studies have extended them to other related fields like image editing. Unlike image generation, image editing aims to modify an image based on user requests while keeping other parts of the image unchanged. Among these, text-based image editing is the most representative task.Some studies have shown that diffusion models are vulnerable to backdoor attacks, where attackers may poison the training data to inject the backdoor into models. However, previous backdoor attacks on diffusion models primarily focus on image generation models without considering image editing models. Given that image editing models accept multimodal inputs, it raises a new question regarding the effectiveness of different modalities triggers in backdoor attacks on these models. To address this question, we propose a backdoor attack framework for image editing models, named TrojanEdit, which can handle different modalities triggers. We explore five types of visual triggers, three types of textual triggers, and combine them together as fifteen types of multimodal triggers, conducting extensive experiments for three types of backdoor attack goals. Our experimental results show that the image editing model has a backdoor bias for texture triggers. Compared to visual triggers, textual triggers have stronger attack effectiveness but also cause more damage to the model's normal functionality. Furthermore, we found that multimodal triggers can achieve a good balance between the attack effectiveness and model's normal functionality.
Rickrolling the Artist: Injecting Backdoors into Text Encoders for Text-to-Image Synthesis
While text-to-image synthesis currently enjoys great popularity among researchers and the general public, the security of these models has been neglected so far. Many text-guided image generation models rely on pre-trained text encoders from external sources, and their users trust that the retrieved models will behave as promised. Unfortunately, this might not be the case. We introduce backdoor attacks against text-guided generative models and demonstrate that their text encoders pose a major tampering risk. Our attacks only slightly alter an encoder so that no suspicious model behavior is apparent for image generations with clean prompts. By then inserting a single character trigger into the prompt, e.g., a non-Latin character or emoji, the adversary can trigger the model to either generate images with pre-defined attributes or images following a hidden, potentially malicious description. We empirically demonstrate the high effectiveness of our attacks on Stable Diffusion and highlight that the injection process of a single backdoor takes less than two minutes. Besides phrasing our approach solely as an attack, it can also force an encoder to forget phrases related to certain concepts, such as nudity or violence, and help to make image generation safer.
Generating Potent Poisons and Backdoors from Scratch with Guided Diffusion
Modern neural networks are often trained on massive datasets that are web scraped with minimal human inspection. As a result of this insecure curation pipeline, an adversary can poison or backdoor the resulting model by uploading malicious data to the internet and waiting for a victim to scrape and train on it. Existing approaches for creating poisons and backdoors start with randomly sampled clean data, called base samples, and then modify those samples to craft poisons. However, some base samples may be significantly more amenable to poisoning than others. As a result, we may be able to craft more potent poisons by carefully choosing the base samples. In this work, we use guided diffusion to synthesize base samples from scratch that lead to significantly more potent poisons and backdoors than previous state-of-the-art attacks. Our Guided Diffusion Poisoning (GDP) base samples can be combined with any downstream poisoning or backdoor attack to boost its effectiveness. Our implementation code is publicly available at: https://github.com/hsouri/GDP .
Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment
To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.
Defending LLMs against Jailbreaking Attacks via Backtranslation
Although many large language models (LLMs) have been trained to refuse harmful requests, they are still vulnerable to jailbreaking attacks, which rewrite the original prompt to conceal its harmful intent. In this paper, we propose a new method for defending LLMs against jailbreaking attacks by ``backtranslation''. Specifically, given an initial response generated by the target LLM from an input prompt, our backtranslation prompts a language model to infer an input prompt that can lead to the response. The inferred prompt is called the backtranslated prompt which tends to reveal the actual intent of the original prompt, since it is generated based on the LLM's response and is not directly manipulated by the attacker. We then run the target LLM again on the backtranslated prompt, and we refuse the original prompt if the model refuses the backtranslated prompt. We explain that the proposed defense provides several benefits on its effectiveness and efficiency. We empirically demonstrate that our defense significantly outperforms the baselines, in the cases that are hard for the baselines, and our defense also has little impact on the generation quality for benign input prompts.
Detecting Backdoor Samples in Contrastive Language Image Pretraining
Contrastive language-image pretraining (CLIP) has been found to be vulnerable to poisoning backdoor attacks where the adversary can achieve an almost perfect attack success rate on CLIP models by poisoning only 0.01\% of the training dataset. This raises security concerns on the current practice of pretraining large-scale models on unscrutinized web data using CLIP. In this work, we analyze the representations of backdoor-poisoned samples learned by CLIP models and find that they exhibit unique characteristics in their local subspace, i.e., their local neighborhoods are far more sparse than that of clean samples. Based on this finding, we conduct a systematic study on detecting CLIP backdoor attacks and show that these attacks can be easily and efficiently detected by traditional density ratio-based local outlier detectors, whereas existing backdoor sample detection methods fail. Our experiments also reveal that an unintentional backdoor already exists in the original CC3M dataset and has been trained into a popular open-source model released by OpenCLIP. Based on our detector, one can clean up a million-scale web dataset (e.g., CC3M) efficiently within 15 minutes using 4 Nvidia A100 GPUs. The code is publicly available in our https://github.com/HanxunH/Detect-CLIP-Backdoor-Samples{GitHub repository}.
Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats
As large language models (LLMs) become increasingly capable, it is prudent to assess whether safety measures remain effective even if LLMs intentionally try to bypass them. Previous work introduced control evaluations, an adversarial framework for testing deployment strategies of untrusted models (i.e., models which might be trying to bypass safety measures). While prior work treats a single failure as unacceptable, we perform control evaluations in a "distributed threat setting" -- a setting where no single action is catastrophic and no single action provides overwhelming evidence of misalignment. We approach this problem with a two-level deployment framework that uses an adaptive macro-protocol to choose between micro-protocols. Micro-protocols operate on a single task, using a less capable, but extensively tested (trusted) model to harness and monitor the untrusted model. Meanwhile, the macro-protocol maintains an adaptive credence on the untrusted model's alignment based on its past actions, using it to pick between safer and riskier micro-protocols. We evaluate our method in a code generation testbed where a red team attempts to generate subtly backdoored code with an LLM whose deployment is safeguarded by a blue team. We plot Pareto frontiers of safety (# of non-backdoored solutions) and usefulness (# of correct solutions). At a given level of usefulness, our adaptive deployment strategy reduces the number of backdoors by 80% compared to non-adaptive baselines.
Char-mander Use mBackdoor! A Study of Cross-lingual Backdoor Attacks in Multilingual LLMs
We explore Cross-lingual Backdoor ATtacks (X-BAT) in multilingual Large Language Models (mLLMs), revealing how backdoors inserted in one language can automatically transfer to others through shared embedding spaces. Using toxicity classification as a case study, we demonstrate that attackers can compromise multilingual systems by poisoning data in a single language, with rare tokens serving as specific effective triggers. Our findings expose a critical vulnerability in the fundamental architecture that enables cross-lingual transfer in these models. Our code and data are publicly available at https://github.com/himanshubeniwal/X-BAT.
Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models
Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial. One commonly used method to assess the reliability of LLMs' responses is uncertainty estimation, which gauges the likelihood of their answers being correct. While many studies focus on improving the accuracy of uncertainty estimations for LLMs, our research investigates the fragility of uncertainty estimation and explores potential attacks. We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output. Specifically, the proposed backdoor attack method can alter an LLM's output probability distribution, causing the probability distribution to converge towards an attacker-predefined distribution while ensuring that the top-1 prediction remains unchanged. Our experimental results demonstrate that this attack effectively undermines the model's self-evaluation reliability in multiple-choice questions. For instance, we achieved a 100 attack success rate (ASR) across three different triggering strategies in four models. Further, we investigate whether this manipulation generalizes across different prompts and domains. This work highlights a significant threat to the reliability of LLMs and underscores the need for future defenses against such attacks. The code is available at https://github.com/qcznlp/uncertainty_attack.
Poisoning and Backdooring Contrastive Learning
Multimodal contrastive learning methods like CLIP train on noisy and uncurated training datasets. This is cheaper than labeling datasets manually, and even improves out-of-distribution robustness. We show that this practice makes backdoor and poisoning attacks a significant threat. By poisoning just 0.01% of a dataset (e.g., just 300 images of the 3 million-example Conceptual Captions dataset), we can cause the model to misclassify test images by overlaying a small patch. Targeted poisoning attacks, whereby the model misclassifies a particular test input with an adversarially-desired label, are even easier requiring control of 0.0001% of the dataset (e.g., just three out of the 3 million images). Our attacks call into question whether training on noisy and uncurated Internet scrapes is desirable.
BoT: Breaking Long Thought Processes of o1-like Large Language Models through Backdoor Attack
Longer thought, better performance: large language models with deep reasoning capabilities, particularly o1-like models, have demonstrated remarkable performance by generating extensive thought processes during inference. This trade-off reveals a potential vulnerability: adversaries could compromise model performance by forcing immediate responses without thought processes. To this end, in this paper, we introduce a novel attack scenario targeting the long thought processes of o1-like models and propose BoT (Break CoT), which can selectively break intrinsic reasoning mechanisms through backdoor attacks. BoT constructs poisoned datasets with designed triggers and injects backdoor by either supervised fine-tuning or direct preference optimization. When triggered, the model directly generates answers without thought processes, while maintaining normal reasoning capabilities for clean inputs. Extensive experiments on open-source o1-like models, including recent DeepSeek-R1, demonstrate that BoT nearly achieves high attack success rates while maintaining clean accuracy, highlighting the critical safety risk in current models. Furthermore, the relationship between task difficulty and helpfulness reveals a potential application for good, enabling users to customize model behavior based on task complexity. Code is available at https://github.com/zihao-ai/BoT{https://github.com/zihao-ai/BoT}.
Is poisoning a real threat to LLM alignment? Maybe more so than you think
Recent advancements in Reinforcement Learning with Human Feedback (RLHF) have significantly impacted the alignment of Large Language Models (LLMs). The sensitivity of reinforcement learning algorithms such as Proximal Policy Optimization (PPO) has led to new line work on Direct Policy Optimization (DPO), which treats RLHF in a supervised learning framework. The increased practical use of these RLHF methods warrants an analysis of their vulnerabilities. In this work, we investigate the vulnerabilities of DPO to poisoning attacks under different scenarios and compare the effectiveness of preference poisoning, a first of its kind. We comprehensively analyze DPO's vulnerabilities under different types of attacks, i.e., backdoor and non-backdoor attacks, and different poisoning methods across a wide array of language models, i.e., LLama 7B, Mistral 7B, and Gemma 7B. We find that unlike PPO-based methods, which, when it comes to backdoor attacks, require at least 4\% of the data to be poisoned to elicit harmful behavior, we exploit the true vulnerabilities of DPO more simply so we can poison the model with only as much as 0.5\% of the data. We further investigate the potential reasons behind the vulnerability and how well this vulnerability translates into backdoor vs non-backdoor attacks.
Backdoor Attacks Against Deep Image Compression via Adaptive Frequency Trigger
Recent deep-learning-based compression methods have achieved superior performance compared with traditional approaches. However, deep learning models have proven to be vulnerable to backdoor attacks, where some specific trigger patterns added to the input can lead to malicious behavior of the models. In this paper, we present a novel backdoor attack with multiple triggers against learned image compression models. Motivated by the widely used discrete cosine transform (DCT) in existing compression systems and standards, we propose a frequency-based trigger injection model that adds triggers in the DCT domain. In particular, we design several attack objectives for various attacking scenarios, including: 1) attacking compression quality in terms of bit-rate and reconstruction quality; 2) attacking task-driven measures, such as down-stream face recognition and semantic segmentation. Moreover, a novel simple dynamic loss is designed to balance the influence of different loss terms adaptively, which helps achieve more efficient training. Extensive experiments show that with our trained trigger injection models and simple modification of encoder parameters (of the compression model), the proposed attack can successfully inject several backdoors with corresponding triggers in a single image compression model.
AI Control: Improving Safety Despite Intentional Subversion
As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. Researchers have investigated a variety of safety techniques for this purpose, e.g. using models to review the outputs of other models, or red-teaming techniques to surface subtle failure modes. However, researchers have not evaluated whether such techniques still ensure safety if the model is itself intentionally trying to subvert them. In this paper, we develop and evaluate pipelines of safety techniques ("protocols") that are robust to intentional subversion. We investigate a scenario in which we want to solve a sequence of programming problems, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate protocols that aim to never submit solutions containing backdoors, which we operationalize here as logical errors that are not caught by test cases. We investigate a range of protocols and test each against strategies that the untrusted model could use to subvert them. One protocol is what we call trusted editing. This protocol first asks GPT-4 to write code, and then asks GPT-3.5 to rate the suspiciousness of that code. If the code is below some suspiciousness threshold, it is submitted. Otherwise, GPT-3.5 edits the solution to remove parts that seem suspicious and then submits the edited code. Another protocol is untrusted monitoring. This protocol asks GPT-4 to write code, and then asks another instance of GPT-4 whether the code is backdoored, using various techniques to prevent the GPT-4 instances from colluding. These protocols improve substantially on simple baselines.
Certifiers Make Neural Networks Vulnerable to Availability Attacks
To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulations or attacks could not have changed the outcome. For the remaining predictions without guarantees, the method abstains from making a prediction, and a fallback strategy needs to be invoked, which typically incurs additional costs, can require a human operator, or even fail to provide any prediction. While this is a key concept towards safe and secure AI, we show for the first time that this approach comes with its own security risks, as such fallback strategies can be deliberately triggered by an adversary. In addition to naturally occurring abstains for some inputs and perturbations, the adversary can use training-time attacks to deliberately trigger the fallback with high probability. This transfers the main system load onto the fallback, reducing the overall system's integrity and/or availability. We design two novel availability attacks, which show the practical relevance of these threats. For example, adding 1% poisoned data during training is sufficient to trigger the fallback and hence make the model unavailable for up to 100% of all inputs by inserting the trigger. Our extensive experiments across multiple datasets, model architectures, and certifiers demonstrate the broad applicability of these attacks. An initial investigation into potential defenses shows that current approaches are insufficient to mitigate the issue, highlighting the need for new, specific solutions.
T-Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based Text Classification
Deep Neural Network (DNN) classifiers are known to be vulnerable to Trojan or backdoor attacks, where the classifier is manipulated such that it misclassifies any input containing an attacker-determined Trojan trigger. Backdoors compromise a model's integrity, thereby posing a severe threat to the landscape of DNN-based classification. While multiple defenses against such attacks exist for classifiers in the image domain, there have been limited efforts to protect classifiers in the text domain. We present Trojan-Miner (T-Miner) -- a defense framework for Trojan attacks on DNN-based text classifiers. T-Miner employs a sequence-to-sequence (seq-2-seq) generative model that probes the suspicious classifier and learns to produce text sequences that are likely to contain the Trojan trigger. T-Miner then analyzes the text produced by the generative model to determine if they contain trigger phrases, and correspondingly, whether the tested classifier has a backdoor. T-Miner requires no access to the training dataset or clean inputs of the suspicious classifier, and instead uses synthetically crafted "nonsensical" text inputs to train the generative model. We extensively evaluate T-Miner on 1100 model instances spanning 3 ubiquitous DNN model architectures, 5 different classification tasks, and a variety of trigger phrases. We show that T-Miner detects Trojan and clean models with a 98.75% overall accuracy, while achieving low false positives on clean models. We also show that T-Miner is robust against a variety of targeted, advanced attacks from an adaptive attacker.
BACKTIME: Backdoor Attacks on Multivariate Time Series Forecasting
Multivariate Time Series (MTS) forecasting is a fundamental task with numerous real-world applications, such as transportation, climate, and epidemiology. While a myriad of powerful deep learning models have been developed for this task, few works have explored the robustness of MTS forecasting models to malicious attacks, which is crucial for their trustworthy employment in high-stake scenarios. To address this gap, we dive deep into the backdoor attacks on MTS forecasting models and propose an effective attack method named BackTime.By subtly injecting a few stealthy triggers into the MTS data, BackTime can alter the predictions of the forecasting model according to the attacker's intent. Specifically, BackTime first identifies vulnerable timestamps in the data for poisoning, and then adaptively synthesizes stealthy and effective triggers by solving a bi-level optimization problem with a GNN-based trigger generator. Extensive experiments across multiple datasets and state-of-the-art MTS forecasting models demonstrate the effectiveness, versatility, and stealthiness of attacks. The code is available at https://github.com/xiaolin-cs/BackTime.
Towards Robust Model Watermark via Reducing Parametric Vulnerability
Deep neural networks are valuable assets considering their commercial benefits and huge demands for costly annotation and computation resources. To protect the copyright of DNNs, backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model by embedding a specific backdoor behavior before releasing it. The defenders (usually the model owners) can identify whether a suspicious third-party model is ``stolen'' from them based on the presence of the behavior. Unfortunately, these watermarks are proven to be vulnerable to removal attacks even like fine-tuning. To further explore this vulnerability, we investigate the parameter space and find there exist many watermark-removed models in the vicinity of the watermarked one, which may be easily used by removal attacks. Inspired by this finding, we propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior. Extensive experiments demonstrate that our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks. The codes for reproducing our main experiments are available at https://github.com/GuanhaoGan/robust-model-watermarking.
Spinning Language Models: Risks of Propaganda-As-A-Service and Countermeasures
We investigate a new threat to neural sequence-to-sequence (seq2seq) models: training-time attacks that cause models to "spin" their outputs so as to support an adversary-chosen sentiment or point of view -- but only when the input contains adversary-chosen trigger words. For example, a spinned summarization model outputs positive summaries of any text that mentions the name of some individual or organization. Model spinning introduces a "meta-backdoor" into a model. Whereas conventional backdoors cause models to produce incorrect outputs on inputs with the trigger, outputs of spinned models preserve context and maintain standard accuracy metrics, yet also satisfy a meta-task chosen by the adversary. Model spinning enables propaganda-as-a-service, where propaganda is defined as biased speech. An adversary can create customized language models that produce desired spins for chosen triggers, then deploy these models to generate disinformation (a platform attack), or else inject them into ML training pipelines (a supply-chain attack), transferring malicious functionality to downstream models trained by victims. To demonstrate the feasibility of model spinning, we develop a new backdooring technique. It stacks an adversarial meta-task onto a seq2seq model, backpropagates the desired meta-task output to points in the word-embedding space we call "pseudo-words," and uses pseudo-words to shift the entire output distribution of the seq2seq model. We evaluate this attack on language generation, summarization, and translation models with different triggers and meta-tasks such as sentiment, toxicity, and entailment. Spinned models largely maintain their accuracy metrics (ROUGE and BLEU) while shifting their outputs to satisfy the adversary's meta-task. We also show that, in the case of a supply-chain attack, the spin functionality transfers to downstream models.
Built-in Vulnerabilities to Imperceptible Adversarial Perturbations
Designing models that are robust to small adversarial perturbations of their inputs has proven remarkably difficult. In this work we show that the reverse problem---making models more vulnerable---is surprisingly easy. After presenting some proofs of concept on MNIST, we introduce a generic tilting attack that injects vulnerabilities into the linear layers of pre-trained networks by increasing their sensitivity to components of low variance in the training data without affecting their performance on test data. We illustrate this attack on a multilayer perceptron trained on SVHN and use it to design a stand-alone adversarial module which we call a steganogram decoder. Finally, we show on CIFAR-10 that a poisoning attack with a poisoning rate as low as 0.1% can induce vulnerabilities to chosen imperceptible backdoor signals in state-of-the-art networks. Beyond their practical implications, these different results shed new light on the nature of the adversarial example phenomenon.
Prompt Leakage effect and defense strategies for multi-turn LLM interactions
Prompt leakage poses a compelling security and privacy threat in LLM applications. Leakage of system prompts may compromise intellectual property, and act as adversarial reconnaissance for an attacker. A systematic evaluation of prompt leakage threats and mitigation strategies is lacking, especially for multi-turn LLM interactions. In this paper, we systematically investigate LLM vulnerabilities against prompt leakage for 10 closed- and open-source LLMs, across four domains. We design a unique threat model which leverages the LLM sycophancy effect and elevates the average attack success rate (ASR) from 17.7% to 86.2% in a multi-turn setting. Our standardized setup further allows dissecting leakage of specific prompt contents such as task instructions and knowledge documents. We measure the mitigation effect of 7 black-box defense strategies, along with finetuning an open-source model to defend against leakage attempts. We present different combination of defenses against our threat model, including a cost analysis. Our study highlights key takeaways for building secure LLM applications and provides directions for research in multi-turn LLM interactions
Understanding the Robustness of Randomized Feature Defense Against Query-Based Adversarial Attacks
Recent works have shown that deep neural networks are vulnerable to adversarial examples that find samples close to the original image but can make the model misclassify. Even with access only to the model's output, an attacker can employ black-box attacks to generate such adversarial examples. In this work, we propose a simple and lightweight defense against black-box attacks by adding random noise to hidden features at intermediate layers of the model at inference time. Our theoretical analysis confirms that this method effectively enhances the model's resilience against both score-based and decision-based black-box attacks. Importantly, our defense does not necessitate adversarial training and has minimal impact on accuracy, rendering it applicable to any pre-trained model. Our analysis also reveals the significance of selectively adding noise to different parts of the model based on the gradient of the adversarial objective function, which can be varied during the attack. We demonstrate the robustness of our defense against multiple black-box attacks through extensive empirical experiments involving diverse models with various architectures.
BaxBench: Can LLMs Generate Correct and Secure Backends?
The automatic generation of programs has long been a fundamental challenge in computer science. Recent benchmarks have shown that large language models (LLMs) can effectively generate code at the function level, make code edits, and solve algorithmic coding tasks. However, to achieve full automation, LLMs should be able to generate production-quality, self-contained application modules. To evaluate the capabilities of LLMs in solving this challenge, we introduce BaxBench, a novel evaluation benchmark consisting of 392 tasks for the generation of backend applications. We focus on backends for three critical reasons: (i) they are practically relevant, building the core components of most modern web and cloud software, (ii) they are difficult to get right, requiring multiple functions and files to achieve the desired functionality, and (iii) they are security-critical, as they are exposed to untrusted third-parties, making secure solutions that prevent deployment-time attacks an imperative. BaxBench validates the functionality of the generated applications with comprehensive test cases, and assesses their security exposure by executing end-to-end exploits. Our experiments reveal key limitations of current LLMs in both functionality and security: (i) even the best model, OpenAI o1, achieves a mere 60% on code correctness; (ii) on average, we could successfully execute security exploits on more than half of the correct programs generated by each LLM; and (iii) in less popular backend frameworks, models further struggle to generate correct and secure applications. Progress on BaxBench signifies important steps towards autonomous and secure software development with LLMs.
AdaptGuard: Defending Against Universal Attacks for Model Adaptation
Model adaptation aims at solving the domain transfer problem under the constraint of only accessing the pretrained source models. With the increasing considerations of data privacy and transmission efficiency, this paradigm has been gaining recent popularity. This paper studies the vulnerability to universal attacks transferred from the source domain during model adaptation algorithms due to the existence of the malicious providers. We explore both universal adversarial perturbations and backdoor attacks as loopholes on the source side and discover that they still survive in the target models after adaptation. To address this issue, we propose a model preprocessing framework, named AdaptGuard, to improve the security of model adaptation algorithms. AdaptGuard avoids direct use of the risky source parameters through knowledge distillation and utilizes the pseudo adversarial samples under adjusted radius to enhance the robustness. AdaptGuard is a plug-and-play module that requires neither robust pretrained models nor any changes for the following model adaptation algorithms. Extensive results on three commonly used datasets and two popular adaptation methods validate that AdaptGuard can effectively defend against universal attacks and maintain clean accuracy in the target domain simultaneously. We hope this research will shed light on the safety and robustness of transfer learning.
JAILJUDGE: A Comprehensive Jailbreak Judge Benchmark with Multi-Agent Enhanced Explanation Evaluation Framework
Despite advancements in enhancing LLM safety against jailbreak attacks, evaluating LLM defenses remains a challenge, with current methods often lacking explainability and generalization to complex scenarios, leading to incomplete assessments (e.g., direct judgment without reasoning, low F1 score of GPT-4 in complex cases, bias in multilingual scenarios). To address this, we present JAILJUDGE, a comprehensive benchmark featuring diverse risk scenarios, including synthetic, adversarial, in-the-wild, and multilingual prompts, along with high-quality human-annotated datasets. The JAILJUDGE dataset includes over 35k+ instruction-tune data with reasoning explainability and JAILJUDGETEST, a 4.5k+ labeled set for risk scenarios, and a 6k+ multilingual set across ten languages. To enhance evaluation with explicit reasoning, we propose the JailJudge MultiAgent framework, which enables explainable, fine-grained scoring (1 to 10). This framework supports the construction of instruction-tuning ground truth and facilitates the development of JAILJUDGE Guard, an end-to-end judge model that provides reasoning and eliminates API costs. Additionally, we introduce JailBoost, an attacker-agnostic attack enhancer, and GuardShield, a moderation defense, both leveraging JAILJUDGE Guard. Our experiments demonstrate the state-of-the-art performance of JailJudge methods (JailJudge MultiAgent, JAILJUDGE Guard) across diverse models (e.g., GPT-4, Llama-Guard) and zero-shot scenarios. JailBoost and GuardShield significantly improve jailbreak attack and defense tasks under zero-shot settings, with JailBoost enhancing performance by 29.24% and GuardShield reducing defense ASR from 40.46% to 0.15%.
Backpropagation Path Search On Adversarial Transferability
Deep neural networks are vulnerable to adversarial examples, dictating the imperativeness to test the model's robustness before deployment. Transfer-based attackers craft adversarial examples against surrogate models and transfer them to victim models deployed in the black-box situation. To enhance the adversarial transferability, structure-based attackers adjust the backpropagation path to avoid the attack from overfitting the surrogate model. However, existing structure-based attackers fail to explore the convolution module in CNNs and modify the backpropagation graph heuristically, leading to limited effectiveness. In this paper, we propose backPropagation pAth Search (PAS), solving the aforementioned two problems. We first propose SkipConv to adjust the backpropagation path of convolution by structural reparameterization. To overcome the drawback of heuristically designed backpropagation paths, we further construct a DAG-based search space, utilize one-step approximation for path evaluation and employ Bayesian Optimization to search for the optimal path. We conduct comprehensive experiments in a wide range of transfer settings, showing that PAS improves the attack success rate by a huge margin for both normally trained and defense models.
Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models
Motivated by ethical and legal concerns, the scientific community is actively developing methods to limit the misuse of Text-to-Image diffusion models for reproducing copyrighted, violent, explicit, or personal information in the generated images. Simultaneously, researchers put these newly developed safety measures to the test by assuming the role of an adversary to find vulnerabilities and backdoors in them. We use compositional property of diffusion models, which allows to leverage multiple prompts in a single image generation. This property allows us to combine other concepts, that should not have been affected by the inhibition, to reconstruct the vector, responsible for target concept generation, even though the direct computation of this vector is no longer accessible. We provide theoretical and empirical evidence why the proposed attacks are possible and discuss the implications of these findings for safe model deployment. We argue that it is essential to consider all possible approaches to image generation with diffusion models that can be employed by an adversary. Our work opens up the discussion about the implications of concept arithmetics and compositional inference for safety mechanisms in diffusion models. Content Advisory: This paper contains discussions and model-generated content that may be considered offensive. Reader discretion is advised. Project page: https://cs-people.bu.edu/vpetsiuk/arc
Long-Short History of Gradients is All You Need: Detecting Malicious and Unreliable Clients in Federated Learning
Federated learning offers a framework of training a machine learning model in a distributed fashion while preserving privacy of the participants. As the server cannot govern the clients' actions, nefarious clients may attack the global model by sending malicious local gradients. In the meantime, there could also be unreliable clients who are benign but each has a portion of low-quality training data (e.g., blur or low-resolution images), thus may appearing similar as malicious clients. Therefore, a defense mechanism will need to perform a three-fold differentiation which is much more challenging than the conventional (two-fold) case. This paper introduces MUD-HoG, a novel defense algorithm that addresses this challenge in federated learning using long-short history of gradients, and treats the detected malicious and unreliable clients differently. Not only this, but we can also distinguish between targeted and untargeted attacks among malicious clients, unlike most prior works which only consider one type of the attacks. Specifically, we take into account sign-flipping, additive-noise, label-flipping, and multi-label-flipping attacks, under a non-IID setting. We evaluate MUD-HoG with six state-of-the-art methods on two datasets. The results show that MUD-HoG outperforms all of them in terms of accuracy as well as precision and recall, in the presence of a mixture of multiple (four) types of attackers as well as unreliable clients. Moreover, unlike most prior works which can only tolerate a low population of harmful users, MUD-HoG can work with and successfully detect a wide range of malicious and unreliable clients - up to 47.5% and 10%, respectively, of the total population. Our code is open-sourced at https://github.com/LabSAINT/MUD-HoG_Federated_Learning.
DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified Robustness
Machine Learning (ML) models have been utilized for malware detection for over two decades. Consequently, this ignited an ongoing arms race between malware authors and antivirus systems, compelling researchers to propose defenses for malware-detection models against evasion attacks. However, most if not all existing defenses against evasion attacks suffer from sizable performance degradation and/or can defend against only specific attacks, which makes them less practical in real-world settings. In this work, we develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection. Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables. After showing how DRSM is theoretically robust against attacks with contiguous adversarial bytes, we verify its performance and certified robustness experimentally, where we observe only marginal accuracy drops as the cost of robustness. To our knowledge, we are the first to offer certified robustness in the realm of static detection of malware executables. More surprisingly, through evaluating DRSM against 9 empirical attacks of different types, we observe that the proposed defense is empirically robust to some extent against a diverse set of attacks, some of which even fall out of the scope of its original threat model. In addition, we collected 15.5K recent benign raw executables from diverse sources, which will be made public as a dataset called PACE (Publicly Accessible Collection(s) of Executables) to alleviate the scarcity of publicly available benign datasets for studying malware detection and provide future research with more representative data of the time.
InjecGuard: Benchmarking and Mitigating Over-defense in Prompt Injection Guardrail Models
Prompt injection attacks pose a critical threat to large language models (LLMs), enabling goal hijacking and data leakage. Prompt guard models, though effective in defense, suffer from over-defense -- falsely flagging benign inputs as malicious due to trigger word bias. To address this issue, we introduce NotInject, an evaluation dataset that systematically measures over-defense across various prompt guard models. NotInject contains 339 benign samples enriched with trigger words common in prompt injection attacks, enabling fine-grained evaluation. Our results show that state-of-the-art models suffer from over-defense issues, with accuracy dropping close to random guessing levels (60%). To mitigate this, we propose InjecGuard, a novel prompt guard model that incorporates a new training strategy, Mitigating Over-defense for Free (MOF), which significantly reduces the bias on trigger words. InjecGuard demonstrates state-of-the-art performance on diverse benchmarks including NotInject, surpassing the existing best model by 30.8%, offering a robust and open-source solution for detecting prompt injection attacks. The code and datasets are released at https://github.com/SaFoLab-WISC/InjecGuard.
Safe and Robust Watermark Injection with a Single OoD Image
Training a high-performance deep neural network requires large amounts of data and computational resources. Protecting the intellectual property (IP) and commercial ownership of a deep model is challenging yet increasingly crucial. A major stream of watermarking strategies implants verifiable backdoor triggers by poisoning training samples, but these are often unrealistic due to data privacy and safety concerns and are vulnerable to minor model changes such as fine-tuning. To overcome these challenges, we propose a safe and robust backdoor-based watermark injection technique that leverages the diverse knowledge from a single out-of-distribution (OoD) image, which serves as a secret key for IP verification. The independence of training data makes it agnostic to third-party promises of IP security. We induce robustness via random perturbation of model parameters during watermark injection to defend against common watermark removal attacks, including fine-tuning, pruning, and model extraction. Our experimental results demonstrate that the proposed watermarking approach is not only time- and sample-efficient without training data, but also robust against the watermark removal attacks above.
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
The lack of adversarial robustness has been recognized as an important issue for state-of-the-art machine learning (ML) models, e.g., deep neural networks (DNNs). Thereby, robustifying ML models against adversarial attacks is now a major focus of research. However, nearly all existing defense methods, particularly for robust training, made the white-box assumption that the defender has the access to the details of an ML model (or its surrogate alternatives if available), e.g., its architectures and parameters. Beyond existing works, in this paper we aim to address the problem of black-box defense: How to robustify a black-box model using just input queries and output feedback? Such a problem arises in practical scenarios, where the owner of the predictive model is reluctant to share model information in order to preserve privacy. To this end, we propose a general notion of defensive operation that can be applied to black-box models, and design it through the lens of denoised smoothing (DS), a first-order (FO) certified defense technique. To allow the design of merely using model queries, we further integrate DS with the zeroth-order (gradient-free) optimization. However, a direct implementation of zeroth-order (ZO) optimization suffers a high variance of gradient estimates, and thus leads to ineffective defense. To tackle this problem, we next propose to prepend an autoencoder (AE) to a given (black-box) model so that DS can be trained using variance-reduced ZO optimization. We term the eventual defense as ZO-AE-DS. In practice, we empirically show that ZO-AE- DS can achieve improved accuracy, certified robustness, and query complexity over existing baselines. And the effectiveness of our approach is justified under both image classification and image reconstruction tasks. Codes are available at https://github.com/damon-demon/Black-Box-Defense.
ATTRITION: Attacking Static Hardware Trojan Detection Techniques Using Reinforcement Learning
Stealthy hardware Trojans (HTs) inserted during the fabrication of integrated circuits can bypass the security of critical infrastructures. Although researchers have proposed many techniques to detect HTs, several limitations exist, including: (i) a low success rate, (ii) high algorithmic complexity, and (iii) a large number of test patterns. Furthermore, the most pertinent drawback of prior detection techniques stems from an incorrect evaluation methodology, i.e., they assume that an adversary inserts HTs randomly. Such inappropriate adversarial assumptions enable detection techniques to claim high HT detection accuracy, leading to a "false sense of security." Unfortunately, to the best of our knowledge, despite more than a decade of research on detecting HTs inserted during fabrication, there have been no concerted efforts to perform a systematic evaluation of HT detection techniques. In this paper, we play the role of a realistic adversary and question the efficacy of HT detection techniques by developing an automated, scalable, and practical attack framework, ATTRITION, using reinforcement learning (RL). ATTRITION evades eight detection techniques across two HT detection categories, showcasing its agnostic behavior. ATTRITION achieves average attack success rates of 47times and 211times compared to randomly inserted HTs against state-of-the-art HT detection techniques. We demonstrate ATTRITION's ability to evade detection techniques by evaluating designs ranging from the widely-used academic suites to larger designs such as the open-source MIPS and mor1kx processors to AES and a GPS module. Additionally, we showcase the impact of ATTRITION-generated HTs through two case studies (privilege escalation and kill switch) on the mor1kx processor. We envision that our work, along with our released HT benchmarks and models, fosters the development of better HT detection techniques.
Adversarial Robustness by Design through Analog Computing and Synthetic Gradients
We propose a new defense mechanism against adversarial attacks inspired by an optical co-processor, providing robustness without compromising natural accuracy in both white-box and black-box settings. This hardware co-processor performs a nonlinear fixed random transformation, where the parameters are unknown and impossible to retrieve with sufficient precision for large enough dimensions. In the white-box setting, our defense works by obfuscating the parameters of the random projection. Unlike other defenses relying on obfuscated gradients, we find we are unable to build a reliable backward differentiable approximation for obfuscated parameters. Moreover, while our model reaches a good natural accuracy with a hybrid backpropagation - synthetic gradient method, the same approach is suboptimal if employed to generate adversarial examples. We find the combination of a random projection and binarization in the optical system also improves robustness against various types of black-box attacks. Finally, our hybrid training method builds robust features against transfer attacks. We demonstrate our approach on a VGG-like architecture, placing the defense on top of the convolutional features, on CIFAR-10 and CIFAR-100. Code is available at https://github.com/lightonai/adversarial-robustness-by-design.
Preprocessors Matter! Realistic Decision-Based Attacks on Machine Learning Systems
Decision-based adversarial attacks construct inputs that fool a machine-learning model into making targeted mispredictions by making only hard-label queries. For the most part, these attacks have been applied directly to isolated neural network models. However, in practice, machine learning models are just a component of a much larger system. By adding just a single preprocessor in front of a classifier, we find that state-of-the-art query-based attacks are as much as seven times less effective at attacking a prediction pipeline than attacking the machine learning model alone. Hence, attacks that are unaware of this invariance inevitably waste a large number of queries to re-discover or overcome it. We, therefore, develop techniques to first reverse-engineer the preprocessor and then use this extracted information to attack the end-to-end system. Our extraction method requires only a few hundred queries to learn the preprocessors used by most publicly available model pipelines, and our preprocessor-aware attacks recover the same efficacy as just attacking the model alone. The code can be found at https://github.com/google-research/preprocessor-aware-black-box-attack.
Exploring the Universal Vulnerability of Prompt-based Learning Paradigm
Prompt-based learning paradigm bridges the gap between pre-training and fine-tuning, and works effectively under the few-shot setting. However, we find that this learning paradigm inherits the vulnerability from the pre-training stage, where model predictions can be misled by inserting certain triggers into the text. In this paper, we explore this universal vulnerability by either injecting backdoor triggers or searching for adversarial triggers on pre-trained language models using only plain text. In both scenarios, we demonstrate that our triggers can totally control or severely decrease the performance of prompt-based models fine-tuned on arbitrary downstream tasks, reflecting the universal vulnerability of the prompt-based learning paradigm. Further experiments show that adversarial triggers have good transferability among language models. We also find conventional fine-tuning models are not vulnerable to adversarial triggers constructed from pre-trained language models. We conclude by proposing a potential solution to mitigate our attack methods. Code and data are publicly available at https://github.com/leix28/prompt-universal-vulnerability
Does Federated Learning Really Need Backpropagation?
Federated learning (FL) is a general principle for decentralized clients to train a server model collectively without sharing local data. FL is a promising framework with practical applications, but its standard training paradigm requires the clients to backpropagate through the model to compute gradients. Since these clients are typically edge devices and not fully trusted, executing backpropagation on them incurs computational and storage overhead as well as white-box vulnerability. In light of this, we develop backpropagation-free federated learning, dubbed BAFFLE, in which backpropagation is replaced by multiple forward processes to estimate gradients. BAFFLE is 1) memory-efficient and easily fits uploading bandwidth; 2) compatible with inference-only hardware optimization and model quantization or pruning; and 3) well-suited to trusted execution environments, because the clients in BAFFLE only execute forward propagation and return a set of scalars to the server. Empirically we use BAFFLE to train deep models from scratch or to finetune pretrained models, achieving acceptable results. Code is available in https://github.com/FengHZ/BAFFLE.
On the Exploitability of Reinforcement Learning with Human Feedback for Large Language Models
Reinforcement Learning with Human Feedback (RLHF) is a methodology designed to align Large Language Models (LLMs) with human preferences, playing an important role in LLMs alignment. Despite its advantages, RLHF relies on human annotators to rank the text, which can introduce potential security vulnerabilities if any adversarial annotator (i.e., attackers) manipulates the ranking score by up-ranking any malicious text to steer the LLM adversarially. To assess the red-teaming of RLHF against human preference data poisoning, we propose RankPoison, a poisoning attack method on candidates' selection of preference rank flipping to reach certain malicious behaviors (e.g., generating longer sequences, which can increase the computational cost). With poisoned dataset generated by RankPoison, we can perform poisoning attacks on LLMs to generate longer tokens without hurting the original safety alignment performance. Moreover, applying RankPoison, we also successfully implement a backdoor attack where LLMs can generate longer answers under questions with the trigger word. Our findings highlight critical security challenges in RLHF, underscoring the necessity for more robust alignment methods for LLMs.
Activation Space Interventions Can Be Transferred Between Large Language Models
The study of representation universality in AI models reveals growing convergence across domains, modalities, and architectures. However, the practical applications of representation universality remain largely unexplored. We bridge this gap by demonstrating that safety interventions can be transferred between models through learned mappings of their shared activation spaces. We demonstrate this approach on two well-established AI safety tasks: backdoor removal and refusal of harmful prompts, showing successful transfer of steering vectors that alter the models' outputs in a predictable way. Additionally, we propose a new task, corrupted capabilities, where models are fine-tuned to embed knowledge tied to a backdoor. This tests their ability to separate useful skills from backdoors, reflecting real-world challenges. Extensive experiments across Llama, Qwen and Gemma model families show that our method enables using smaller models to efficiently align larger ones. Furthermore, we demonstrate that autoencoder mappings between base and fine-tuned models can serve as reliable ``lightweight safety switches", allowing dynamic toggling between model behaviors.