- Elucidation of Relaxation Dynamics Beyond Equilibrium Through AI-informed X-ray Photon Correlation Spectroscopy Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales, however spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. In this work we have developed an unsupervised deep learning (DL) framework for automated classification and interpretation of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system behavior. We demonstrate how this method can be used to rapidly explore large datasets to identify samples of interest, and we apply this approach to directly correlate bulk properties of a model system to microscopic dynamics. Importantly, this DL framework is material and process agnostic, marking a concrete step towards autonomous materials discovery. 10 authors · Dec 7, 2022
- Constraints on Cosmic Rays Acceleration in Bright Gamma-ray Bursts with Observations of Fermi Gamma-ray bursts (GRBs) are widely suggested as potential sources of ultrahigh-energy cosmic rays (UHECRs). The kinetic energy of the jets dissipates, leading to the production of an enormous amount of gamma-ray photons and possibly also the acceleration of protons. The accelerated protons will interact with the radiation of the GRB via the photomeson and Bethe-Heitler processes, which can initiate electromagnetic cascades. This process can give rise to broadband radiation up to the GeV-TeV gamma-ray regime. The expected gamma-ray flux from cascades depends on properties of the GRB jet, such as the dissipation radius R_{rm diss}, the bulk Lorentz factor Gamma, and the baryon loading factor eta_p. Therefore, observations of Fermi-LAT can impose constraints on these important parameters. In this study, we select 12 GRBs of high keV-MeV fluence and constrain the baryon loading factor, under different combinations of the bulk Lorentz factor and the dissipation radius based on Fermi-LAT's measurements. Our findings indicate a strong constraint of eta_p<10 for most selected GRBs over a large parameter space except for large dissipation radii (gtrsim 10^{15}rm cm) and high bulk Lorentz factors (gtrsim 600). The constraint is comparable to, and in some GRBs even stronger than, that from high-energy neutrinos for stacked GRBs. Our results suggest that for typical bulk Lorentz factor of several hundreds, the dissipation radii of GRBs need be large to avoid overshooting the GeV gamma-ray flux during the prompt emission phase of GRBs, which can be used to constrain GRBs. 6 authors · Jan 16
- Haldane Bundles: A Dataset for Learning to Predict the Chern Number of Line Bundles on the Torus Characteristic classes, which are abstract topological invariants associated with vector bundles, have become an important notion in modern physics with surprising real-world consequences. As a representative example, the incredible properties of topological insulators, which are insulators in their bulk but conductors on their surface, can be completely characterized by a specific characteristic class associated with their electronic band structure, the first Chern class. Given their importance to next generation computing and the computational challenge of calculating them using first-principles approaches, there is a need to develop machine learning approaches to predict the characteristic classes associated with a material system. To aid in this program we introduce the {Haldane bundle dataset}, which consists of synthetically generated complex line bundles on the 2-torus. We envision this dataset, which is not as challenging as noisy and sparsely measured real-world datasets but (as we show) still difficult for off-the-shelf architectures, to be a testing ground for architectures that incorporate the rich topological and geometric priors underlying characteristic classes. 8 authors · Dec 6, 2023
- MatterGen: a generative model for inorganic materials design The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design. 21 authors · Dec 6, 2023