File size: 2,353 Bytes
2cfd107 1c780d6 2cfd107 1c780d6 2cfd107 1c780d6 2cfd107 1c780d6 2cfd107 a3e4156 2cfd107 1c780d6 2cfd107 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: patnelt60/distilbert-base-uncased-finetuned-clinc
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: validation
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9267741935483871
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of [patnelt60/distilbert-base-uncased-finetuned-clinc](https://huggingface.co/patnelt60/distilbert-base-uncased-finetuned-clinc) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1904
- Accuracy: 0.9268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 384
- eval_batch_size: 384
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 0.4572 | 0.8619 |
| No log | 2.0 | 80 | 0.3775 | 0.8881 |
| No log | 3.0 | 120 | 0.3184 | 0.9013 |
| No log | 4.0 | 160 | 0.2753 | 0.9110 |
| No log | 5.0 | 200 | 0.2441 | 0.9187 |
| No log | 6.0 | 240 | 0.2224 | 0.9232 |
| No log | 7.0 | 280 | 0.2073 | 0.9248 |
| 0.3426 | 8.0 | 320 | 0.1982 | 0.9268 |
| 0.3426 | 9.0 | 360 | 0.1923 | 0.9265 |
| 0.3426 | 10.0 | 400 | 0.1904 | 0.9268 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.13.3
|