Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1692297288.muon +3 -0
- .summary/0/events.out.tfevents.1692299326.muon +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000838_3432448_reward_21.885.pth +3 -0
- checkpoint_p0/checkpoint_000000170_696320.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- git.diff +0 -0
- replay.mp4 +3 -0
- sf_log.txt +1052 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1692297288.muon
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f77a453b82a7dd849f60596a33ec64bb9547a7a2b04ec5077c39efe1f3bd8451
|
3 |
+
size 20541
|
.summary/0/events.out.tfevents.1692299326.muon
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ff3ed53d73d06bc18d378198081089b4eed5359b619e88a44b5d9dee4c2e602
|
3 |
+
size 80896
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 9.83 +/- 4.64
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r patonw/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000838_3432448_reward_21.885.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f506d94602a55b5dab0ddba2ee6800ae90a47b4ef8aed2ff7bdbf91effe7ca6d
|
3 |
+
size 34928806
|
checkpoint_p0/checkpoint_000000170_696320.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:770c35795564017cc9f7222f55bdec6247a6a7838317eb962e788f6df7ed7df7
|
3 |
+
size 34929028
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f0a29e7c309070dd5148bfb923ac215fba92c3fa1fedde79d86bbf64128edf1
|
3 |
+
size 34929220
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "336df5a551fea3a2cf40925bf3083db6b4518c91",
|
141 |
+
"git_repo_name": "https://github.com/huggingface/deep-rl-class"
|
142 |
+
}
|
git.diff
ADDED
The diff for this file is too large to render.
See raw diff
|
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33bf7c09ae64a3500f531643c6c22988477b4d6a5be6c98d93ef82310c705f4a
|
3 |
+
size 18208913
|
sf_log.txt
ADDED
@@ -0,0 +1,1052 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-08-17 11:34:50,384][121125] Saving configuration to /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json...
|
2 |
+
[2023-08-17 11:34:50,404][121125] Rollout worker 0 uses device cpu
|
3 |
+
[2023-08-17 11:34:50,404][121125] Rollout worker 1 uses device cpu
|
4 |
+
[2023-08-17 11:34:50,405][121125] Rollout worker 2 uses device cpu
|
5 |
+
[2023-08-17 11:34:50,405][121125] Rollout worker 3 uses device cpu
|
6 |
+
[2023-08-17 11:34:50,406][121125] Rollout worker 4 uses device cpu
|
7 |
+
[2023-08-17 11:34:50,406][121125] Rollout worker 5 uses device cpu
|
8 |
+
[2023-08-17 11:34:50,406][121125] Rollout worker 6 uses device cpu
|
9 |
+
[2023-08-17 11:34:50,406][121125] Rollout worker 7 uses device cpu
|
10 |
+
[2023-08-17 11:34:50,440][121125] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2023-08-17 11:34:50,441][121125] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2023-08-17 11:34:50,458][121125] Starting all processes...
|
13 |
+
[2023-08-17 11:34:50,458][121125] Starting process learner_proc0
|
14 |
+
[2023-08-17 11:34:50,508][121125] Starting all processes...
|
15 |
+
[2023-08-17 11:34:50,512][121125] Starting process inference_proc0-0
|
16 |
+
[2023-08-17 11:34:50,512][121125] Starting process rollout_proc0
|
17 |
+
[2023-08-17 11:34:50,513][121125] Starting process rollout_proc1
|
18 |
+
[2023-08-17 11:34:50,514][121125] Starting process rollout_proc2
|
19 |
+
[2023-08-17 11:34:50,514][121125] Starting process rollout_proc3
|
20 |
+
[2023-08-17 11:34:50,514][121125] Starting process rollout_proc4
|
21 |
+
[2023-08-17 11:34:50,514][121125] Starting process rollout_proc5
|
22 |
+
[2023-08-17 11:34:50,514][121125] Starting process rollout_proc6
|
23 |
+
[2023-08-17 11:34:50,515][121125] Starting process rollout_proc7
|
24 |
+
[2023-08-17 11:34:51,414][121211] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
25 |
+
[2023-08-17 11:34:51,414][121211] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
26 |
+
[2023-08-17 11:34:51,424][121211] Num visible devices: 1
|
27 |
+
[2023-08-17 11:34:51,443][121211] Starting seed is not provided
|
28 |
+
[2023-08-17 11:34:51,444][121211] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
29 |
+
[2023-08-17 11:34:51,444][121211] Initializing actor-critic model on device cuda:0
|
30 |
+
[2023-08-17 11:34:51,444][121211] RunningMeanStd input shape: (3, 72, 128)
|
31 |
+
[2023-08-17 11:34:51,445][121211] RunningMeanStd input shape: (1,)
|
32 |
+
[2023-08-17 11:34:51,456][121211] ConvEncoder: input_channels=3
|
33 |
+
[2023-08-17 11:34:51,528][121211] Conv encoder output size: 512
|
34 |
+
[2023-08-17 11:34:51,528][121211] Policy head output size: 512
|
35 |
+
[2023-08-17 11:34:51,541][121211] Created Actor Critic model with architecture:
|
36 |
+
[2023-08-17 11:34:51,541][121211] ActorCriticSharedWeights(
|
37 |
+
(obs_normalizer): ObservationNormalizer(
|
38 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
39 |
+
(running_mean_std): ModuleDict(
|
40 |
+
(obs): RunningMeanStdInPlace()
|
41 |
+
)
|
42 |
+
)
|
43 |
+
)
|
44 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
45 |
+
(encoder): VizdoomEncoder(
|
46 |
+
(basic_encoder): ConvEncoder(
|
47 |
+
(enc): RecursiveScriptModule(
|
48 |
+
original_name=ConvEncoderImpl
|
49 |
+
(conv_head): RecursiveScriptModule(
|
50 |
+
original_name=Sequential
|
51 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
52 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
53 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
54 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
55 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
56 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
57 |
+
)
|
58 |
+
(mlp_layers): RecursiveScriptModule(
|
59 |
+
original_name=Sequential
|
60 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
61 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
62 |
+
)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(core): ModelCoreRNN(
|
67 |
+
(core): GRU(512, 512)
|
68 |
+
)
|
69 |
+
(decoder): MlpDecoder(
|
70 |
+
(mlp): Identity()
|
71 |
+
)
|
72 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
73 |
+
(action_parameterization): ActionParameterizationDefault(
|
74 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
[2023-08-17 11:34:51,559][121232] Worker 6 uses CPU cores [18, 19, 20]
|
78 |
+
[2023-08-17 11:34:51,561][121228] Worker 3 uses CPU cores [9, 10, 11]
|
79 |
+
[2023-08-17 11:34:51,567][121230] Worker 5 uses CPU cores [15, 16, 17]
|
80 |
+
[2023-08-17 11:34:51,567][121226] Worker 0 uses CPU cores [0, 1, 2]
|
81 |
+
[2023-08-17 11:34:51,573][121224] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
82 |
+
[2023-08-17 11:34:51,573][121224] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
83 |
+
[2023-08-17 11:34:51,581][121224] Num visible devices: 1
|
84 |
+
[2023-08-17 11:34:51,590][121225] Worker 1 uses CPU cores [3, 4, 5]
|
85 |
+
[2023-08-17 11:34:51,593][121229] Worker 4 uses CPU cores [12, 13, 14]
|
86 |
+
[2023-08-17 11:34:51,613][121231] Worker 7 uses CPU cores [21, 22, 23]
|
87 |
+
[2023-08-17 11:34:51,628][121227] Worker 2 uses CPU cores [6, 7, 8]
|
88 |
+
[2023-08-17 11:34:53,156][121211] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2023-08-17 11:34:53,157][121211] No checkpoints found
|
90 |
+
[2023-08-17 11:34:53,157][121211] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2023-08-17 11:34:53,157][121211] Initialized policy 0 weights for model version 0
|
92 |
+
[2023-08-17 11:34:53,158][121211] LearnerWorker_p0 finished initialization!
|
93 |
+
[2023-08-17 11:34:53,158][121211] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2023-08-17 11:34:53,455][121125] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
95 |
+
[2023-08-17 11:34:53,703][121224] RunningMeanStd input shape: (3, 72, 128)
|
96 |
+
[2023-08-17 11:34:53,703][121224] RunningMeanStd input shape: (1,)
|
97 |
+
[2023-08-17 11:34:53,710][121224] ConvEncoder: input_channels=3
|
98 |
+
[2023-08-17 11:34:53,760][121224] Conv encoder output size: 512
|
99 |
+
[2023-08-17 11:34:53,760][121224] Policy head output size: 512
|
100 |
+
[2023-08-17 11:34:54,313][121125] Inference worker 0-0 is ready!
|
101 |
+
[2023-08-17 11:34:54,314][121125] All inference workers are ready! Signal rollout workers to start!
|
102 |
+
[2023-08-17 11:34:54,329][121229] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2023-08-17 11:34:54,329][121226] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2023-08-17 11:34:54,329][121231] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2023-08-17 11:34:54,329][121232] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2023-08-17 11:34:54,330][121227] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2023-08-17 11:34:54,330][121228] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2023-08-17 11:34:54,333][121225] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2023-08-17 11:34:54,333][121230] Doom resolution: 160x120, resize resolution: (128, 72)
|
110 |
+
[2023-08-17 11:34:54,460][121227] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
|
111 |
+
[2023-08-17 11:34:54,461][121227] EvtLoop [rollout_proc2_evt_loop, process=rollout_proc2] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
112 |
+
Traceback (most recent call last):
|
113 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
|
114 |
+
self.game.init()
|
115 |
+
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
|
116 |
+
|
117 |
+
During handling of the above exception, another exception occurred:
|
118 |
+
|
119 |
+
Traceback (most recent call last):
|
120 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
121 |
+
slot_callable(*args)
|
122 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
123 |
+
env_runner.init(self.timing)
|
124 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
125 |
+
self._reset()
|
126 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
127 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
128 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 414, in reset
|
129 |
+
return self.env.reset(seed=seed, options=options)
|
130 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
131 |
+
obs, info = self.env.reset(**kwargs)
|
132 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
133 |
+
obs, info = self.env.reset(**kwargs)
|
134 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
135 |
+
return self.env.reset(**kwargs)
|
136 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 462, in reset
|
137 |
+
obs, info = self.env.reset(seed=seed, options=options)
|
138 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 82, in reset
|
139 |
+
obs, info = self.env.reset(**kwargs)
|
140 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 414, in reset
|
141 |
+
return self.env.reset(seed=seed, options=options)
|
142 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
|
143 |
+
return self.env.reset(**kwargs)
|
144 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
|
145 |
+
self._ensure_initialized()
|
146 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
|
147 |
+
self.initialize()
|
148 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
|
149 |
+
self._game_init()
|
150 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
|
151 |
+
raise EnvCriticalError()
|
152 |
+
sample_factory.envs.env_utils.EnvCriticalError
|
153 |
+
[2023-08-17 11:34:54,462][121227] Unhandled exception in evt loop rollout_proc2_evt_loop
|
154 |
+
[2023-08-17 11:34:54,535][121231] Decorrelating experience for 0 frames...
|
155 |
+
[2023-08-17 11:34:54,544][121226] Decorrelating experience for 0 frames...
|
156 |
+
[2023-08-17 11:34:54,548][121232] Decorrelating experience for 0 frames...
|
157 |
+
[2023-08-17 11:34:54,550][121228] Decorrelating experience for 0 frames...
|
158 |
+
[2023-08-17 11:34:54,550][121230] Decorrelating experience for 0 frames...
|
159 |
+
[2023-08-17 11:34:54,728][121231] Decorrelating experience for 32 frames...
|
160 |
+
[2023-08-17 11:34:54,746][121229] Decorrelating experience for 0 frames...
|
161 |
+
[2023-08-17 11:34:54,747][121228] Decorrelating experience for 32 frames...
|
162 |
+
[2023-08-17 11:34:54,747][121230] Decorrelating experience for 32 frames...
|
163 |
+
[2023-08-17 11:34:54,748][121232] Decorrelating experience for 32 frames...
|
164 |
+
[2023-08-17 11:34:54,934][121229] Decorrelating experience for 32 frames...
|
165 |
+
[2023-08-17 11:34:54,934][121226] Decorrelating experience for 32 frames...
|
166 |
+
[2023-08-17 11:34:54,954][121230] Decorrelating experience for 64 frames...
|
167 |
+
[2023-08-17 11:34:54,954][121228] Decorrelating experience for 64 frames...
|
168 |
+
[2023-08-17 11:34:54,955][121232] Decorrelating experience for 64 frames...
|
169 |
+
[2023-08-17 11:34:55,137][121226] Decorrelating experience for 64 frames...
|
170 |
+
[2023-08-17 11:34:55,138][121229] Decorrelating experience for 64 frames...
|
171 |
+
[2023-08-17 11:34:55,138][121231] Decorrelating experience for 64 frames...
|
172 |
+
[2023-08-17 11:34:55,138][121225] Decorrelating experience for 0 frames...
|
173 |
+
[2023-08-17 11:34:55,144][121232] Decorrelating experience for 96 frames...
|
174 |
+
[2023-08-17 11:34:55,336][121225] Decorrelating experience for 32 frames...
|
175 |
+
[2023-08-17 11:34:55,338][121231] Decorrelating experience for 96 frames...
|
176 |
+
[2023-08-17 11:34:55,367][121228] Decorrelating experience for 96 frames...
|
177 |
+
[2023-08-17 11:34:55,519][121225] Decorrelating experience for 64 frames...
|
178 |
+
[2023-08-17 11:34:55,524][121226] Decorrelating experience for 96 frames...
|
179 |
+
[2023-08-17 11:34:55,734][121230] Decorrelating experience for 96 frames...
|
180 |
+
[2023-08-17 11:34:55,737][121229] Decorrelating experience for 96 frames...
|
181 |
+
[2023-08-17 11:34:55,742][121225] Decorrelating experience for 96 frames...
|
182 |
+
[2023-08-17 11:34:56,232][121211] Signal inference workers to stop experience collection...
|
183 |
+
[2023-08-17 11:34:56,234][121224] InferenceWorker_p0-w0: stopping experience collection
|
184 |
+
[2023-08-17 11:34:57,320][121211] Signal inference workers to resume experience collection...
|
185 |
+
[2023-08-17 11:34:57,320][121224] InferenceWorker_p0-w0: resuming experience collection
|
186 |
+
[2023-08-17 11:34:58,455][121125] Fps is (10 sec: 6553.7, 60 sec: 6553.7, 300 sec: 6553.7). Total num frames: 32768. Throughput: 0: 566.8. Samples: 2834. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
187 |
+
[2023-08-17 11:34:58,456][121125] Avg episode reward: [(0, '3.897')]
|
188 |
+
[2023-08-17 11:34:58,583][121224] Updated weights for policy 0, policy_version 10 (0.0188)
|
189 |
+
[2023-08-17 11:34:59,640][121224] Updated weights for policy 0, policy_version 20 (0.0006)
|
190 |
+
[2023-08-17 11:35:00,607][121224] Updated weights for policy 0, policy_version 30 (0.0005)
|
191 |
+
[2023-08-17 11:35:01,567][121224] Updated weights for policy 0, policy_version 40 (0.0005)
|
192 |
+
[2023-08-17 11:35:02,584][121224] Updated weights for policy 0, policy_version 50 (0.0006)
|
193 |
+
[2023-08-17 11:35:03,455][121125] Fps is (10 sec: 23347.3, 60 sec: 23347.3, 300 sec: 23347.3). Total num frames: 233472. Throughput: 0: 5847.0. Samples: 58470. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
194 |
+
[2023-08-17 11:35:03,456][121125] Avg episode reward: [(0, '4.655')]
|
195 |
+
[2023-08-17 11:35:03,457][121211] Saving new best policy, reward=4.655!
|
196 |
+
[2023-08-17 11:35:03,725][121224] Updated weights for policy 0, policy_version 60 (0.0006)
|
197 |
+
[2023-08-17 11:35:04,740][121224] Updated weights for policy 0, policy_version 70 (0.0006)
|
198 |
+
[2023-08-17 11:35:05,714][121224] Updated weights for policy 0, policy_version 80 (0.0005)
|
199 |
+
[2023-08-17 11:35:06,667][121224] Updated weights for policy 0, policy_version 90 (0.0005)
|
200 |
+
[2023-08-17 11:35:07,660][121224] Updated weights for policy 0, policy_version 100 (0.0005)
|
201 |
+
[2023-08-17 11:35:08,455][121125] Fps is (10 sec: 40959.9, 60 sec: 29491.3, 300 sec: 29491.3). Total num frames: 442368. Throughput: 0: 5926.0. Samples: 88890. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
202 |
+
[2023-08-17 11:35:08,456][121125] Avg episode reward: [(0, '4.598')]
|
203 |
+
[2023-08-17 11:35:08,628][121224] Updated weights for policy 0, policy_version 110 (0.0005)
|
204 |
+
[2023-08-17 11:35:09,699][121224] Updated weights for policy 0, policy_version 120 (0.0006)
|
205 |
+
[2023-08-17 11:35:10,436][121125] Heartbeat connected on Batcher_0
|
206 |
+
[2023-08-17 11:35:10,438][121125] Heartbeat connected on LearnerWorker_p0
|
207 |
+
[2023-08-17 11:35:10,442][121125] Heartbeat connected on InferenceWorker_p0-w0
|
208 |
+
[2023-08-17 11:35:10,444][121125] Heartbeat connected on RolloutWorker_w0
|
209 |
+
[2023-08-17 11:35:10,446][121125] Heartbeat connected on RolloutWorker_w1
|
210 |
+
[2023-08-17 11:35:10,450][121125] Heartbeat connected on RolloutWorker_w3
|
211 |
+
[2023-08-17 11:35:10,453][121125] Heartbeat connected on RolloutWorker_w4
|
212 |
+
[2023-08-17 11:35:10,455][121125] Heartbeat connected on RolloutWorker_w5
|
213 |
+
[2023-08-17 11:35:10,456][121125] Heartbeat connected on RolloutWorker_w6
|
214 |
+
[2023-08-17 11:35:10,459][121125] Heartbeat connected on RolloutWorker_w7
|
215 |
+
[2023-08-17 11:35:10,742][121224] Updated weights for policy 0, policy_version 130 (0.0005)
|
216 |
+
[2023-08-17 11:35:11,789][121224] Updated weights for policy 0, policy_version 140 (0.0005)
|
217 |
+
[2023-08-17 11:35:12,785][121224] Updated weights for policy 0, policy_version 150 (0.0005)
|
218 |
+
[2023-08-17 11:35:13,455][121125] Fps is (10 sec: 40550.2, 60 sec: 31948.8, 300 sec: 31948.8). Total num frames: 638976. Throughput: 0: 7468.3. Samples: 149366. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
219 |
+
[2023-08-17 11:35:13,456][121125] Avg episode reward: [(0, '4.646')]
|
220 |
+
[2023-08-17 11:35:13,856][121224] Updated weights for policy 0, policy_version 160 (0.0007)
|
221 |
+
[2023-08-17 11:35:14,953][121224] Updated weights for policy 0, policy_version 170 (0.0007)
|
222 |
+
[2023-08-17 11:35:15,042][121230] EvtLoop [rollout_proc5_evt_loop, process=rollout_proc5] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance5'), args=(0, 0)
|
223 |
+
Traceback (most recent call last):
|
224 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
225 |
+
slot_callable(*args)
|
226 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
227 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
228 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
229 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
230 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
231 |
+
return self.env.step(action)
|
232 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
233 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
234 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
235 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
236 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
237 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
238 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
|
239 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
240 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
|
241 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
242 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
243 |
+
return self.env.step(action)
|
244 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
245 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
246 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
247 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
248 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
249 |
+
[2023-08-17 11:35:15,042][121229] EvtLoop [rollout_proc4_evt_loop, process=rollout_proc4] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance4'), args=(1, 0)
|
250 |
+
Traceback (most recent call last):
|
251 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
252 |
+
slot_callable(*args)
|
253 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
254 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
255 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
256 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
257 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
258 |
+
return self.env.step(action)
|
259 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
260 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
261 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
262 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
263 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
264 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
265 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
|
266 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
267 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
|
268 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
269 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
270 |
+
return self.env.step(action)
|
271 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
272 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
273 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
274 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
275 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
276 |
+
[2023-08-17 11:35:15,043][121230] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc5_evt_loop
|
277 |
+
[2023-08-17 11:35:15,043][121229] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc4_evt_loop
|
278 |
+
[2023-08-17 11:35:15,042][121228] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance3'), args=(0, 0)
|
279 |
+
Traceback (most recent call last):
|
280 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
281 |
+
slot_callable(*args)
|
282 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
283 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
284 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
285 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
286 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
287 |
+
return self.env.step(action)
|
288 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
289 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
290 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
291 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
292 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
293 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
294 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
|
295 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
296 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
|
297 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
298 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
299 |
+
return self.env.step(action)
|
300 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
301 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
302 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
303 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
304 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
305 |
+
[2023-08-17 11:35:15,044][121228] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc3_evt_loop
|
306 |
+
[2023-08-17 11:35:15,043][121231] EvtLoop [rollout_proc7_evt_loop, process=rollout_proc7] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance7'), args=(0, 0)
|
307 |
+
Traceback (most recent call last):
|
308 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
309 |
+
slot_callable(*args)
|
310 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
311 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
312 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
313 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
314 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
315 |
+
return self.env.step(action)
|
316 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
317 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
318 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
319 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
320 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
321 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
322 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
|
323 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
324 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
|
325 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
326 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
327 |
+
return self.env.step(action)
|
328 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
329 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
330 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
331 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
332 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
333 |
+
[2023-08-17 11:35:15,044][121231] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc7_evt_loop
|
334 |
+
[2023-08-17 11:35:15,046][121232] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance6'), args=(0, 0)
|
335 |
+
Traceback (most recent call last):
|
336 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
337 |
+
slot_callable(*args)
|
338 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
339 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
340 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
341 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
342 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
343 |
+
return self.env.step(action)
|
344 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
345 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
346 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
347 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
348 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
349 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
350 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
|
351 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
352 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
|
353 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
354 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
355 |
+
return self.env.step(action)
|
356 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
357 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
358 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
359 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
360 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
361 |
+
[2023-08-17 11:35:15,047][121232] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc6_evt_loop
|
362 |
+
[2023-08-17 11:35:15,046][121225] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance1'), args=(1, 0)
|
363 |
+
Traceback (most recent call last):
|
364 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
365 |
+
slot_callable(*args)
|
366 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
367 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
368 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
369 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
370 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
371 |
+
return self.env.step(action)
|
372 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
373 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
374 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
375 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
376 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
377 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
378 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
|
379 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
380 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
|
381 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
382 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
383 |
+
return self.env.step(action)
|
384 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
385 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
386 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
387 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
388 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
389 |
+
[2023-08-17 11:35:15,047][121225] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc1_evt_loop
|
390 |
+
[2023-08-17 11:35:15,042][121226] EvtLoop [rollout_proc0_evt_loop, process=rollout_proc0] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance0'), args=(0, 0)
|
391 |
+
Traceback (most recent call last):
|
392 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
393 |
+
slot_callable(*args)
|
394 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
|
395 |
+
complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
|
396 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
|
397 |
+
new_obs, rewards, terminated, truncated, infos = e.step(actions)
|
398 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
399 |
+
return self.env.step(action)
|
400 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
|
401 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
402 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
|
403 |
+
obs, rew, terminated, truncated, info = self.env.step(action)
|
404 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
|
405 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
406 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
|
407 |
+
observation, reward, terminated, truncated, info = self.env.step(action)
|
408 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
|
409 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
410 |
+
File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
|
411 |
+
return self.env.step(action)
|
412 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
|
413 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
414 |
+
File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
|
415 |
+
reward = self.game.make_action(actions_flattened, self.skip_frames)
|
416 |
+
vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
|
417 |
+
[2023-08-17 11:35:15,048][121226] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc0_evt_loop
|
418 |
+
[2023-08-17 11:35:15,058][121125] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 121125], exiting...
|
419 |
+
[2023-08-17 11:35:15,059][121125] Runner profile tree view:
|
420 |
+
main_loop: 24.6015
|
421 |
+
[2023-08-17 11:35:15,060][121211] Stopping Batcher_0...
|
422 |
+
[2023-08-17 11:35:15,060][121211] Loop batcher_evt_loop terminating...
|
423 |
+
[2023-08-17 11:35:15,060][121125] Collected {0: 696320}, FPS: 28303.9
|
424 |
+
[2023-08-17 11:35:15,061][121211] Saving /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000170_696320.pth...
|
425 |
+
[2023-08-17 11:35:15,107][121211] Stopping LearnerWorker_p0...
|
426 |
+
[2023-08-17 11:35:15,108][121211] Loop learner_proc0_evt_loop terminating...
|
427 |
+
[2023-08-17 11:35:15,121][121224] Weights refcount: 2 0
|
428 |
+
[2023-08-17 11:35:15,123][121224] Stopping InferenceWorker_p0-w0...
|
429 |
+
[2023-08-17 11:35:15,123][121224] Loop inference_proc0-0_evt_loop terminating...
|
430 |
+
[2023-08-17 12:08:48,041][131794] Saving configuration to /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json...
|
431 |
+
[2023-08-17 12:08:48,053][131794] Rollout worker 0 uses device cpu
|
432 |
+
[2023-08-17 12:08:48,054][131794] Rollout worker 1 uses device cpu
|
433 |
+
[2023-08-17 12:08:48,054][131794] Rollout worker 2 uses device cpu
|
434 |
+
[2023-08-17 12:08:48,055][131794] Rollout worker 3 uses device cpu
|
435 |
+
[2023-08-17 12:08:48,055][131794] Rollout worker 4 uses device cpu
|
436 |
+
[2023-08-17 12:08:48,055][131794] Rollout worker 5 uses device cpu
|
437 |
+
[2023-08-17 12:08:48,056][131794] Rollout worker 6 uses device cpu
|
438 |
+
[2023-08-17 12:08:48,056][131794] Rollout worker 7 uses device cpu
|
439 |
+
[2023-08-17 12:08:48,086][131794] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
440 |
+
[2023-08-17 12:08:48,087][131794] InferenceWorker_p0-w0: min num requests: 2
|
441 |
+
[2023-08-17 12:08:48,104][131794] Starting all processes...
|
442 |
+
[2023-08-17 12:08:48,105][131794] Starting process learner_proc0
|
443 |
+
[2023-08-17 12:08:48,154][131794] Starting all processes...
|
444 |
+
[2023-08-17 12:08:48,158][131794] Starting process inference_proc0-0
|
445 |
+
[2023-08-17 12:08:48,158][131794] Starting process rollout_proc0
|
446 |
+
[2023-08-17 12:08:48,158][131794] Starting process rollout_proc1
|
447 |
+
[2023-08-17 12:08:48,159][131794] Starting process rollout_proc2
|
448 |
+
[2023-08-17 12:08:48,159][131794] Starting process rollout_proc3
|
449 |
+
[2023-08-17 12:08:48,160][131794] Starting process rollout_proc4
|
450 |
+
[2023-08-17 12:08:48,161][131794] Starting process rollout_proc5
|
451 |
+
[2023-08-17 12:08:48,162][131794] Starting process rollout_proc6
|
452 |
+
[2023-08-17 12:08:48,162][131794] Starting process rollout_proc7
|
453 |
+
[2023-08-17 12:08:49,071][131864] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
454 |
+
[2023-08-17 12:08:49,071][131864] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
455 |
+
[2023-08-17 12:08:49,082][131864] Num visible devices: 1
|
456 |
+
[2023-08-17 12:08:49,101][131864] Starting seed is not provided
|
457 |
+
[2023-08-17 12:08:49,102][131864] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
458 |
+
[2023-08-17 12:08:49,102][131864] Initializing actor-critic model on device cuda:0
|
459 |
+
[2023-08-17 12:08:49,102][131864] RunningMeanStd input shape: (3, 72, 128)
|
460 |
+
[2023-08-17 12:08:49,102][131864] RunningMeanStd input shape: (1,)
|
461 |
+
[2023-08-17 12:08:49,111][131864] ConvEncoder: input_channels=3
|
462 |
+
[2023-08-17 12:08:49,128][131877] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
463 |
+
[2023-08-17 12:08:49,128][131877] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
464 |
+
[2023-08-17 12:08:49,131][131877] Num visible devices: 1
|
465 |
+
[2023-08-17 12:08:49,176][131864] Conv encoder output size: 512
|
466 |
+
[2023-08-17 12:08:49,176][131864] Policy head output size: 512
|
467 |
+
[2023-08-17 12:08:49,183][131864] Created Actor Critic model with architecture:
|
468 |
+
[2023-08-17 12:08:49,183][131864] ActorCriticSharedWeights(
|
469 |
+
(obs_normalizer): ObservationNormalizer(
|
470 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
471 |
+
(running_mean_std): ModuleDict(
|
472 |
+
(obs): RunningMeanStdInPlace()
|
473 |
+
)
|
474 |
+
)
|
475 |
+
)
|
476 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
477 |
+
(encoder): VizdoomEncoder(
|
478 |
+
(basic_encoder): ConvEncoder(
|
479 |
+
(enc): RecursiveScriptModule(
|
480 |
+
original_name=ConvEncoderImpl
|
481 |
+
(conv_head): RecursiveScriptModule(
|
482 |
+
original_name=Sequential
|
483 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
484 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
485 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
486 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
487 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
488 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
489 |
+
)
|
490 |
+
(mlp_layers): RecursiveScriptModule(
|
491 |
+
original_name=Sequential
|
492 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
493 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
494 |
+
)
|
495 |
+
)
|
496 |
+
)
|
497 |
+
)
|
498 |
+
(core): ModelCoreRNN(
|
499 |
+
(core): GRU(512, 512)
|
500 |
+
)
|
501 |
+
(decoder): MlpDecoder(
|
502 |
+
(mlp): Identity()
|
503 |
+
)
|
504 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
505 |
+
(action_parameterization): ActionParameterizationDefault(
|
506 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
507 |
+
)
|
508 |
+
)
|
509 |
+
[2023-08-17 12:08:49,230][131885] Worker 7 uses CPU cores [21, 22, 23]
|
510 |
+
[2023-08-17 12:08:49,237][131880] Worker 2 uses CPU cores [6, 7, 8]
|
511 |
+
[2023-08-17 12:08:49,239][131884] Worker 6 uses CPU cores [18, 19, 20]
|
512 |
+
[2023-08-17 12:08:49,240][131879] Worker 0 uses CPU cores [0, 1, 2]
|
513 |
+
[2023-08-17 12:08:49,241][131883] Worker 5 uses CPU cores [15, 16, 17]
|
514 |
+
[2023-08-17 12:08:49,242][131881] Worker 3 uses CPU cores [9, 10, 11]
|
515 |
+
[2023-08-17 12:08:49,247][131882] Worker 4 uses CPU cores [12, 13, 14]
|
516 |
+
[2023-08-17 12:08:49,280][131878] Worker 1 uses CPU cores [3, 4, 5]
|
517 |
+
[2023-08-17 12:08:50,303][131864] Using optimizer <class 'torch.optim.adam.Adam'>
|
518 |
+
[2023-08-17 12:08:50,303][131864] Loading state from checkpoint /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000170_696320.pth...
|
519 |
+
[2023-08-17 12:08:50,319][131864] Loading model from checkpoint
|
520 |
+
[2023-08-17 12:08:50,321][131864] Loaded experiment state at self.train_step=170, self.env_steps=696320
|
521 |
+
[2023-08-17 12:08:50,322][131864] Initialized policy 0 weights for model version 170
|
522 |
+
[2023-08-17 12:08:50,322][131864] LearnerWorker_p0 finished initialization!
|
523 |
+
[2023-08-17 12:08:50,323][131864] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
524 |
+
[2023-08-17 12:08:50,883][131877] RunningMeanStd input shape: (3, 72, 128)
|
525 |
+
[2023-08-17 12:08:50,883][131877] RunningMeanStd input shape: (1,)
|
526 |
+
[2023-08-17 12:08:50,890][131877] ConvEncoder: input_channels=3
|
527 |
+
[2023-08-17 12:08:50,941][131877] Conv encoder output size: 512
|
528 |
+
[2023-08-17 12:08:50,941][131877] Policy head output size: 512
|
529 |
+
[2023-08-17 12:08:51,065][131794] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 696320. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
530 |
+
[2023-08-17 12:08:51,490][131794] Inference worker 0-0 is ready!
|
531 |
+
[2023-08-17 12:08:51,491][131794] All inference workers are ready! Signal rollout workers to start!
|
532 |
+
[2023-08-17 12:08:51,506][131880] Doom resolution: 160x120, resize resolution: (128, 72)
|
533 |
+
[2023-08-17 12:08:51,506][131884] Doom resolution: 160x120, resize resolution: (128, 72)
|
534 |
+
[2023-08-17 12:08:51,506][131881] Doom resolution: 160x120, resize resolution: (128, 72)
|
535 |
+
[2023-08-17 12:08:51,506][131885] Doom resolution: 160x120, resize resolution: (128, 72)
|
536 |
+
[2023-08-17 12:08:51,508][131879] Doom resolution: 160x120, resize resolution: (128, 72)
|
537 |
+
[2023-08-17 12:08:51,508][131878] Doom resolution: 160x120, resize resolution: (128, 72)
|
538 |
+
[2023-08-17 12:08:51,508][131882] Doom resolution: 160x120, resize resolution: (128, 72)
|
539 |
+
[2023-08-17 12:08:51,508][131883] Doom resolution: 160x120, resize resolution: (128, 72)
|
540 |
+
[2023-08-17 12:08:51,714][131885] Decorrelating experience for 0 frames...
|
541 |
+
[2023-08-17 12:08:51,715][131883] Decorrelating experience for 0 frames...
|
542 |
+
[2023-08-17 12:08:51,715][131882] Decorrelating experience for 0 frames...
|
543 |
+
[2023-08-17 12:08:51,720][131881] Decorrelating experience for 0 frames...
|
544 |
+
[2023-08-17 12:08:51,735][131884] Decorrelating experience for 0 frames...
|
545 |
+
[2023-08-17 12:08:51,743][131880] Decorrelating experience for 0 frames...
|
546 |
+
[2023-08-17 12:08:51,900][131882] Decorrelating experience for 32 frames...
|
547 |
+
[2023-08-17 12:08:51,906][131885] Decorrelating experience for 32 frames...
|
548 |
+
[2023-08-17 12:08:51,906][131881] Decorrelating experience for 32 frames...
|
549 |
+
[2023-08-17 12:08:51,910][131878] Decorrelating experience for 0 frames...
|
550 |
+
[2023-08-17 12:08:51,920][131884] Decorrelating experience for 32 frames...
|
551 |
+
[2023-08-17 12:08:51,931][131880] Decorrelating experience for 32 frames...
|
552 |
+
[2023-08-17 12:08:51,956][131883] Decorrelating experience for 32 frames...
|
553 |
+
[2023-08-17 12:08:52,104][131878] Decorrelating experience for 32 frames...
|
554 |
+
[2023-08-17 12:08:52,108][131882] Decorrelating experience for 64 frames...
|
555 |
+
[2023-08-17 12:08:52,116][131879] Decorrelating experience for 0 frames...
|
556 |
+
[2023-08-17 12:08:52,124][131881] Decorrelating experience for 64 frames...
|
557 |
+
[2023-08-17 12:08:52,131][131884] Decorrelating experience for 64 frames...
|
558 |
+
[2023-08-17 12:08:52,182][131880] Decorrelating experience for 64 frames...
|
559 |
+
[2023-08-17 12:08:52,299][131878] Decorrelating experience for 64 frames...
|
560 |
+
[2023-08-17 12:08:52,301][131879] Decorrelating experience for 32 frames...
|
561 |
+
[2023-08-17 12:08:52,315][131885] Decorrelating experience for 64 frames...
|
562 |
+
[2023-08-17 12:08:52,441][131882] Decorrelating experience for 96 frames...
|
563 |
+
[2023-08-17 12:08:52,485][131884] Decorrelating experience for 96 frames...
|
564 |
+
[2023-08-17 12:08:52,502][131878] Decorrelating experience for 96 frames...
|
565 |
+
[2023-08-17 12:08:52,530][131879] Decorrelating experience for 64 frames...
|
566 |
+
[2023-08-17 12:08:52,680][131881] Decorrelating experience for 96 frames...
|
567 |
+
[2023-08-17 12:08:52,728][131883] Decorrelating experience for 64 frames...
|
568 |
+
[2023-08-17 12:08:52,732][131885] Decorrelating experience for 96 frames...
|
569 |
+
[2023-08-17 12:08:52,869][131879] Decorrelating experience for 96 frames...
|
570 |
+
[2023-08-17 12:08:52,919][131883] Decorrelating experience for 96 frames...
|
571 |
+
[2023-08-17 12:08:52,923][131880] Decorrelating experience for 96 frames...
|
572 |
+
[2023-08-17 12:08:53,218][131864] Signal inference workers to stop experience collection...
|
573 |
+
[2023-08-17 12:08:53,246][131877] InferenceWorker_p0-w0: stopping experience collection
|
574 |
+
[2023-08-17 12:08:54,097][131864] Signal inference workers to resume experience collection...
|
575 |
+
[2023-08-17 12:08:54,097][131877] InferenceWorker_p0-w0: resuming experience collection
|
576 |
+
[2023-08-17 12:08:55,323][131877] Updated weights for policy 0, policy_version 180 (0.0180)
|
577 |
+
[2023-08-17 12:08:56,065][131794] Fps is (10 sec: 13926.5, 60 sec: 13926.5, 300 sec: 13926.5). Total num frames: 765952. Throughput: 0: 662.8. Samples: 3314. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
578 |
+
[2023-08-17 12:08:56,066][131794] Avg episode reward: [(0, '4.760')]
|
579 |
+
[2023-08-17 12:08:56,070][131864] Saving new best policy, reward=4.760!
|
580 |
+
[2023-08-17 12:08:56,305][131877] Updated weights for policy 0, policy_version 190 (0.0006)
|
581 |
+
[2023-08-17 12:08:57,286][131877] Updated weights for policy 0, policy_version 200 (0.0006)
|
582 |
+
[2023-08-17 12:08:58,252][131877] Updated weights for policy 0, policy_version 210 (0.0007)
|
583 |
+
[2023-08-17 12:08:59,223][131877] Updated weights for policy 0, policy_version 220 (0.0006)
|
584 |
+
[2023-08-17 12:09:00,213][131877] Updated weights for policy 0, policy_version 230 (0.0006)
|
585 |
+
[2023-08-17 12:09:01,065][131794] Fps is (10 sec: 27853.0, 60 sec: 27853.0, 300 sec: 27853.0). Total num frames: 974848. Throughput: 0: 6506.0. Samples: 65060. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
586 |
+
[2023-08-17 12:09:01,067][131794] Avg episode reward: [(0, '4.894')]
|
587 |
+
[2023-08-17 12:09:01,068][131864] Saving new best policy, reward=4.894!
|
588 |
+
[2023-08-17 12:09:01,199][131877] Updated weights for policy 0, policy_version 240 (0.0006)
|
589 |
+
[2023-08-17 12:09:02,167][131877] Updated weights for policy 0, policy_version 250 (0.0006)
|
590 |
+
[2023-08-17 12:09:03,131][131877] Updated weights for policy 0, policy_version 260 (0.0006)
|
591 |
+
[2023-08-17 12:09:04,168][131877] Updated weights for policy 0, policy_version 270 (0.0007)
|
592 |
+
[2023-08-17 12:09:05,171][131877] Updated weights for policy 0, policy_version 280 (0.0007)
|
593 |
+
[2023-08-17 12:09:06,065][131794] Fps is (10 sec: 41779.5, 60 sec: 32495.2, 300 sec: 32495.2). Total num frames: 1183744. Throughput: 0: 6420.3. Samples: 96304. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
594 |
+
[2023-08-17 12:09:06,066][131794] Avg episode reward: [(0, '5.072')]
|
595 |
+
[2023-08-17 12:09:06,069][131864] Saving new best policy, reward=5.072!
|
596 |
+
[2023-08-17 12:09:06,158][131877] Updated weights for policy 0, policy_version 290 (0.0007)
|
597 |
+
[2023-08-17 12:09:07,207][131877] Updated weights for policy 0, policy_version 300 (0.0006)
|
598 |
+
[2023-08-17 12:09:08,081][131794] Heartbeat connected on Batcher_0
|
599 |
+
[2023-08-17 12:09:08,084][131794] Heartbeat connected on LearnerWorker_p0
|
600 |
+
[2023-08-17 12:09:08,089][131794] Heartbeat connected on InferenceWorker_p0-w0
|
601 |
+
[2023-08-17 12:09:08,090][131794] Heartbeat connected on RolloutWorker_w0
|
602 |
+
[2023-08-17 12:09:08,093][131794] Heartbeat connected on RolloutWorker_w1
|
603 |
+
[2023-08-17 12:09:08,094][131794] Heartbeat connected on RolloutWorker_w2
|
604 |
+
[2023-08-17 12:09:08,097][131794] Heartbeat connected on RolloutWorker_w3
|
605 |
+
[2023-08-17 12:09:08,098][131794] Heartbeat connected on RolloutWorker_w4
|
606 |
+
[2023-08-17 12:09:08,102][131794] Heartbeat connected on RolloutWorker_w5
|
607 |
+
[2023-08-17 12:09:08,102][131794] Heartbeat connected on RolloutWorker_w6
|
608 |
+
[2023-08-17 12:09:08,105][131794] Heartbeat connected on RolloutWorker_w7
|
609 |
+
[2023-08-17 12:09:08,269][131877] Updated weights for policy 0, policy_version 310 (0.0007)
|
610 |
+
[2023-08-17 12:09:09,317][131877] Updated weights for policy 0, policy_version 320 (0.0007)
|
611 |
+
[2023-08-17 12:09:10,353][131877] Updated weights for policy 0, policy_version 330 (0.0006)
|
612 |
+
[2023-08-17 12:09:11,065][131794] Fps is (10 sec: 40140.7, 60 sec: 33996.9, 300 sec: 33996.9). Total num frames: 1376256. Throughput: 0: 7819.2. Samples: 156384. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
613 |
+
[2023-08-17 12:09:11,066][131794] Avg episode reward: [(0, '5.895')]
|
614 |
+
[2023-08-17 12:09:11,067][131864] Saving new best policy, reward=5.895!
|
615 |
+
[2023-08-17 12:09:11,382][131877] Updated weights for policy 0, policy_version 340 (0.0006)
|
616 |
+
[2023-08-17 12:09:12,356][131877] Updated weights for policy 0, policy_version 350 (0.0007)
|
617 |
+
[2023-08-17 12:09:13,358][131877] Updated weights for policy 0, policy_version 360 (0.0006)
|
618 |
+
[2023-08-17 12:09:14,367][131877] Updated weights for policy 0, policy_version 370 (0.0006)
|
619 |
+
[2023-08-17 12:09:15,414][131877] Updated weights for policy 0, policy_version 380 (0.0006)
|
620 |
+
[2023-08-17 12:09:16,065][131794] Fps is (10 sec: 39731.1, 60 sec: 35389.6, 300 sec: 35389.6). Total num frames: 1581056. Throughput: 0: 8668.8. Samples: 216718. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
621 |
+
[2023-08-17 12:09:16,066][131794] Avg episode reward: [(0, '5.889')]
|
622 |
+
[2023-08-17 12:09:16,442][131877] Updated weights for policy 0, policy_version 390 (0.0006)
|
623 |
+
[2023-08-17 12:09:17,456][131877] Updated weights for policy 0, policy_version 400 (0.0006)
|
624 |
+
[2023-08-17 12:09:18,507][131877] Updated weights for policy 0, policy_version 410 (0.0006)
|
625 |
+
[2023-08-17 12:09:19,530][131877] Updated weights for policy 0, policy_version 420 (0.0007)
|
626 |
+
[2023-08-17 12:09:20,560][131877] Updated weights for policy 0, policy_version 430 (0.0007)
|
627 |
+
[2023-08-17 12:09:21,065][131794] Fps is (10 sec: 40550.8, 60 sec: 36181.5, 300 sec: 36181.5). Total num frames: 1781760. Throughput: 0: 8212.2. Samples: 246364. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
628 |
+
[2023-08-17 12:09:21,066][131794] Avg episode reward: [(0, '6.038')]
|
629 |
+
[2023-08-17 12:09:21,066][131864] Saving new best policy, reward=6.038!
|
630 |
+
[2023-08-17 12:09:21,554][131877] Updated weights for policy 0, policy_version 440 (0.0006)
|
631 |
+
[2023-08-17 12:09:22,574][131877] Updated weights for policy 0, policy_version 450 (0.0007)
|
632 |
+
[2023-08-17 12:09:23,579][131877] Updated weights for policy 0, policy_version 460 (0.0006)
|
633 |
+
[2023-08-17 12:09:24,534][131877] Updated weights for policy 0, policy_version 470 (0.0006)
|
634 |
+
[2023-08-17 12:09:25,469][131877] Updated weights for policy 0, policy_version 480 (0.0006)
|
635 |
+
[2023-08-17 12:09:26,065][131794] Fps is (10 sec: 40960.0, 60 sec: 36981.1, 300 sec: 36981.1). Total num frames: 1990656. Throughput: 0: 8786.5. Samples: 307528. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
636 |
+
[2023-08-17 12:09:26,066][131794] Avg episode reward: [(0, '8.814')]
|
637 |
+
[2023-08-17 12:09:26,068][131864] Saving new best policy, reward=8.814!
|
638 |
+
[2023-08-17 12:09:26,467][131877] Updated weights for policy 0, policy_version 490 (0.0007)
|
639 |
+
[2023-08-17 12:09:27,472][131877] Updated weights for policy 0, policy_version 500 (0.0007)
|
640 |
+
[2023-08-17 12:09:28,481][131877] Updated weights for policy 0, policy_version 510 (0.0006)
|
641 |
+
[2023-08-17 12:09:29,497][131877] Updated weights for policy 0, policy_version 520 (0.0006)
|
642 |
+
[2023-08-17 12:09:30,455][131877] Updated weights for policy 0, policy_version 530 (0.0007)
|
643 |
+
[2023-08-17 12:09:31,065][131794] Fps is (10 sec: 40959.8, 60 sec: 37376.1, 300 sec: 37376.1). Total num frames: 2191360. Throughput: 0: 9247.0. Samples: 369878. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
644 |
+
[2023-08-17 12:09:31,066][131794] Avg episode reward: [(0, '10.505')]
|
645 |
+
[2023-08-17 12:09:31,067][131864] Saving new best policy, reward=10.505!
|
646 |
+
[2023-08-17 12:09:31,504][131877] Updated weights for policy 0, policy_version 540 (0.0006)
|
647 |
+
[2023-08-17 12:09:32,471][131877] Updated weights for policy 0, policy_version 550 (0.0006)
|
648 |
+
[2023-08-17 12:09:33,439][131877] Updated weights for policy 0, policy_version 560 (0.0006)
|
649 |
+
[2023-08-17 12:09:34,495][131877] Updated weights for policy 0, policy_version 570 (0.0007)
|
650 |
+
[2023-08-17 12:09:35,483][131877] Updated weights for policy 0, policy_version 580 (0.0006)
|
651 |
+
[2023-08-17 12:09:36,065][131794] Fps is (10 sec: 40550.4, 60 sec: 37774.3, 300 sec: 37774.3). Total num frames: 2396160. Throughput: 0: 8903.2. Samples: 400642. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
652 |
+
[2023-08-17 12:09:36,066][131794] Avg episode reward: [(0, '13.981')]
|
653 |
+
[2023-08-17 12:09:36,069][131864] Saving new best policy, reward=13.981!
|
654 |
+
[2023-08-17 12:09:36,506][131877] Updated weights for policy 0, policy_version 590 (0.0007)
|
655 |
+
[2023-08-17 12:09:37,541][131877] Updated weights for policy 0, policy_version 600 (0.0006)
|
656 |
+
[2023-08-17 12:09:38,535][131877] Updated weights for policy 0, policy_version 610 (0.0007)
|
657 |
+
[2023-08-17 12:09:39,574][131877] Updated weights for policy 0, policy_version 620 (0.0006)
|
658 |
+
[2023-08-17 12:09:40,629][131877] Updated weights for policy 0, policy_version 630 (0.0007)
|
659 |
+
[2023-08-17 12:09:41,065][131794] Fps is (10 sec: 40550.4, 60 sec: 38010.9, 300 sec: 38010.9). Total num frames: 2596864. Throughput: 0: 10165.2. Samples: 460746. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
660 |
+
[2023-08-17 12:09:41,066][131794] Avg episode reward: [(0, '16.720')]
|
661 |
+
[2023-08-17 12:09:41,067][131864] Saving new best policy, reward=16.720!
|
662 |
+
[2023-08-17 12:09:41,662][131877] Updated weights for policy 0, policy_version 640 (0.0006)
|
663 |
+
[2023-08-17 12:09:42,705][131877] Updated weights for policy 0, policy_version 650 (0.0007)
|
664 |
+
[2023-08-17 12:09:43,682][131877] Updated weights for policy 0, policy_version 660 (0.0006)
|
665 |
+
[2023-08-17 12:09:44,707][131877] Updated weights for policy 0, policy_version 670 (0.0007)
|
666 |
+
[2023-08-17 12:09:45,654][131877] Updated weights for policy 0, policy_version 680 (0.0006)
|
667 |
+
[2023-08-17 12:09:46,065][131794] Fps is (10 sec: 40550.4, 60 sec: 38279.1, 300 sec: 38279.1). Total num frames: 2801664. Throughput: 0: 10135.5. Samples: 521158. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
668 |
+
[2023-08-17 12:09:46,066][131794] Avg episode reward: [(0, '15.224')]
|
669 |
+
[2023-08-17 12:09:46,644][131877] Updated weights for policy 0, policy_version 690 (0.0006)
|
670 |
+
[2023-08-17 12:09:47,596][131877] Updated weights for policy 0, policy_version 700 (0.0006)
|
671 |
+
[2023-08-17 12:09:48,566][131877] Updated weights for policy 0, policy_version 710 (0.0006)
|
672 |
+
[2023-08-17 12:09:49,544][131877] Updated weights for policy 0, policy_version 720 (0.0006)
|
673 |
+
[2023-08-17 12:09:50,566][131877] Updated weights for policy 0, policy_version 730 (0.0007)
|
674 |
+
[2023-08-17 12:09:51,065][131794] Fps is (10 sec: 41369.5, 60 sec: 38570.7, 300 sec: 38570.7). Total num frames: 3010560. Throughput: 0: 10141.9. Samples: 552690. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
675 |
+
[2023-08-17 12:09:51,066][131794] Avg episode reward: [(0, '16.889')]
|
676 |
+
[2023-08-17 12:09:51,067][131864] Saving new best policy, reward=16.889!
|
677 |
+
[2023-08-17 12:09:51,497][131877] Updated weights for policy 0, policy_version 740 (0.0006)
|
678 |
+
[2023-08-17 12:09:52,458][131877] Updated weights for policy 0, policy_version 750 (0.0006)
|
679 |
+
[2023-08-17 12:09:53,420][131877] Updated weights for policy 0, policy_version 760 (0.0006)
|
680 |
+
[2023-08-17 12:09:54,449][131877] Updated weights for policy 0, policy_version 770 (0.0007)
|
681 |
+
[2023-08-17 12:09:55,425][131877] Updated weights for policy 0, policy_version 780 (0.0007)
|
682 |
+
[2023-08-17 12:09:56,065][131794] Fps is (10 sec: 41779.2, 60 sec: 40891.8, 300 sec: 38817.5). Total num frames: 3219456. Throughput: 0: 10201.7. Samples: 615458. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
683 |
+
[2023-08-17 12:09:56,066][131794] Avg episode reward: [(0, '18.774')]
|
684 |
+
[2023-08-17 12:09:56,069][131864] Saving new best policy, reward=18.774!
|
685 |
+
[2023-08-17 12:09:56,434][131877] Updated weights for policy 0, policy_version 790 (0.0006)
|
686 |
+
[2023-08-17 12:09:57,381][131877] Updated weights for policy 0, policy_version 800 (0.0007)
|
687 |
+
[2023-08-17 12:09:58,323][131877] Updated weights for policy 0, policy_version 810 (0.0006)
|
688 |
+
[2023-08-17 12:09:59,287][131877] Updated weights for policy 0, policy_version 820 (0.0006)
|
689 |
+
[2023-08-17 12:10:00,214][131877] Updated weights for policy 0, policy_version 830 (0.0006)
|
690 |
+
[2023-08-17 12:10:01,065][131794] Fps is (10 sec: 42188.9, 60 sec: 40960.0, 300 sec: 39087.6). Total num frames: 3432448. Throughput: 0: 10286.3. Samples: 679604. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
691 |
+
[2023-08-17 12:10:01,066][131794] Avg episode reward: [(0, '21.885')]
|
692 |
+
[2023-08-17 12:10:01,067][131864] Saving new best policy, reward=21.885!
|
693 |
+
[2023-08-17 12:10:01,201][131877] Updated weights for policy 0, policy_version 840 (0.0006)
|
694 |
+
[2023-08-17 12:10:02,187][131877] Updated weights for policy 0, policy_version 850 (0.0006)
|
695 |
+
[2023-08-17 12:10:03,190][131877] Updated weights for policy 0, policy_version 860 (0.0007)
|
696 |
+
[2023-08-17 12:10:04,150][131877] Updated weights for policy 0, policy_version 870 (0.0006)
|
697 |
+
[2023-08-17 12:10:05,158][131877] Updated weights for policy 0, policy_version 880 (0.0006)
|
698 |
+
[2023-08-17 12:10:06,065][131794] Fps is (10 sec: 41779.0, 60 sec: 40891.7, 300 sec: 39212.4). Total num frames: 3637248. Throughput: 0: 10318.1. Samples: 710680. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
699 |
+
[2023-08-17 12:10:06,066][131794] Avg episode reward: [(0, '19.364')]
|
700 |
+
[2023-08-17 12:10:06,176][131877] Updated weights for policy 0, policy_version 890 (0.0007)
|
701 |
+
[2023-08-17 12:10:07,147][131877] Updated weights for policy 0, policy_version 900 (0.0006)
|
702 |
+
[2023-08-17 12:10:08,101][131877] Updated weights for policy 0, policy_version 910 (0.0007)
|
703 |
+
[2023-08-17 12:10:09,146][131877] Updated weights for policy 0, policy_version 920 (0.0007)
|
704 |
+
[2023-08-17 12:10:10,146][131877] Updated weights for policy 0, policy_version 930 (0.0006)
|
705 |
+
[2023-08-17 12:10:11,065][131794] Fps is (10 sec: 41369.6, 60 sec: 41164.8, 300 sec: 39372.8). Total num frames: 3846144. Throughput: 0: 10327.7. Samples: 772274. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
706 |
+
[2023-08-17 12:10:11,066][131794] Avg episode reward: [(0, '19.007')]
|
707 |
+
[2023-08-17 12:10:11,109][131877] Updated weights for policy 0, policy_version 940 (0.0006)
|
708 |
+
[2023-08-17 12:10:12,081][131877] Updated weights for policy 0, policy_version 950 (0.0007)
|
709 |
+
[2023-08-17 12:10:13,110][131877] Updated weights for policy 0, policy_version 960 (0.0007)
|
710 |
+
[2023-08-17 12:10:14,089][131877] Updated weights for policy 0, policy_version 970 (0.0006)
|
711 |
+
[2023-08-17 12:10:14,877][131864] Saving /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
712 |
+
[2023-08-17 12:10:14,877][131794] Component Batcher_0 stopped!
|
713 |
+
[2023-08-17 12:10:14,877][131864] Stopping Batcher_0...
|
714 |
+
[2023-08-17 12:10:14,889][131864] Loop batcher_evt_loop terminating...
|
715 |
+
[2023-08-17 12:10:14,890][131877] Weights refcount: 2 0
|
716 |
+
[2023-08-17 12:10:14,891][131877] Stopping InferenceWorker_p0-w0...
|
717 |
+
[2023-08-17 12:10:14,891][131877] Loop inference_proc0-0_evt_loop terminating...
|
718 |
+
[2023-08-17 12:10:14,891][131794] Component InferenceWorker_p0-w0 stopped!
|
719 |
+
[2023-08-17 12:10:14,910][131864] Saving /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
720 |
+
[2023-08-17 12:10:14,930][131881] Stopping RolloutWorker_w3...
|
721 |
+
[2023-08-17 12:10:14,930][131881] Loop rollout_proc3_evt_loop terminating...
|
722 |
+
[2023-08-17 12:10:14,930][131794] Component RolloutWorker_w3 stopped!
|
723 |
+
[2023-08-17 12:10:14,935][131882] Stopping RolloutWorker_w4...
|
724 |
+
[2023-08-17 12:10:14,935][131878] Stopping RolloutWorker_w1...
|
725 |
+
[2023-08-17 12:10:14,935][131878] Loop rollout_proc1_evt_loop terminating...
|
726 |
+
[2023-08-17 12:10:14,935][131882] Loop rollout_proc4_evt_loop terminating...
|
727 |
+
[2023-08-17 12:10:14,935][131794] Component RolloutWorker_w4 stopped!
|
728 |
+
[2023-08-17 12:10:14,936][131884] Stopping RolloutWorker_w6...
|
729 |
+
[2023-08-17 12:10:14,936][131794] Component RolloutWorker_w1 stopped!
|
730 |
+
[2023-08-17 12:10:14,936][131884] Loop rollout_proc6_evt_loop terminating...
|
731 |
+
[2023-08-17 12:10:14,936][131794] Component RolloutWorker_w6 stopped!
|
732 |
+
[2023-08-17 12:10:14,938][131879] Stopping RolloutWorker_w0...
|
733 |
+
[2023-08-17 12:10:14,938][131879] Loop rollout_proc0_evt_loop terminating...
|
734 |
+
[2023-08-17 12:10:14,938][131794] Component RolloutWorker_w0 stopped!
|
735 |
+
[2023-08-17 12:10:14,940][131883] Stopping RolloutWorker_w5...
|
736 |
+
[2023-08-17 12:10:14,940][131794] Component RolloutWorker_w5 stopped!
|
737 |
+
[2023-08-17 12:10:14,940][131883] Loop rollout_proc5_evt_loop terminating...
|
738 |
+
[2023-08-17 12:10:14,940][131885] Stopping RolloutWorker_w7...
|
739 |
+
[2023-08-17 12:10:14,940][131885] Loop rollout_proc7_evt_loop terminating...
|
740 |
+
[2023-08-17 12:10:14,940][131794] Component RolloutWorker_w7 stopped!
|
741 |
+
[2023-08-17 12:10:14,963][131880] Stopping RolloutWorker_w2...
|
742 |
+
[2023-08-17 12:10:14,963][131880] Loop rollout_proc2_evt_loop terminating...
|
743 |
+
[2023-08-17 12:10:14,963][131794] Component RolloutWorker_w2 stopped!
|
744 |
+
[2023-08-17 12:10:14,973][131864] Stopping LearnerWorker_p0...
|
745 |
+
[2023-08-17 12:10:14,974][131864] Loop learner_proc0_evt_loop terminating...
|
746 |
+
[2023-08-17 12:10:14,974][131794] Component LearnerWorker_p0 stopped!
|
747 |
+
[2023-08-17 12:10:14,975][131794] Waiting for process learner_proc0 to stop...
|
748 |
+
[2023-08-17 12:10:15,620][131794] Waiting for process inference_proc0-0 to join...
|
749 |
+
[2023-08-17 12:10:15,620][131794] Waiting for process rollout_proc0 to join...
|
750 |
+
[2023-08-17 12:10:15,629][131794] Waiting for process rollout_proc1 to join...
|
751 |
+
[2023-08-17 12:10:15,630][131794] Waiting for process rollout_proc2 to join...
|
752 |
+
[2023-08-17 12:10:15,630][131794] Waiting for process rollout_proc3 to join...
|
753 |
+
[2023-08-17 12:10:15,631][131794] Waiting for process rollout_proc4 to join...
|
754 |
+
[2023-08-17 12:10:15,632][131794] Waiting for process rollout_proc5 to join...
|
755 |
+
[2023-08-17 12:10:15,632][131794] Waiting for process rollout_proc6 to join...
|
756 |
+
[2023-08-17 12:10:15,633][131794] Waiting for process rollout_proc7 to join...
|
757 |
+
[2023-08-17 12:10:15,633][131794] Batcher 0 profile tree view:
|
758 |
+
batching: 6.7047, releasing_batches: 0.0087
|
759 |
+
[2023-08-17 12:10:15,634][131794] InferenceWorker_p0-w0 profile tree view:
|
760 |
+
wait_policy: 0.0000
|
761 |
+
wait_policy_total: 2.0680
|
762 |
+
update_model: 1.3116
|
763 |
+
weight_update: 0.0007
|
764 |
+
one_step: 0.0012
|
765 |
+
handle_policy_step: 74.7597
|
766 |
+
deserialize: 3.1557, stack: 0.3403, obs_to_device_normalize: 17.0704, forward: 37.2802, send_messages: 4.8157
|
767 |
+
prepare_outputs: 8.7975
|
768 |
+
to_cpu: 5.6577
|
769 |
+
[2023-08-17 12:10:15,634][131794] Learner 0 profile tree view:
|
770 |
+
misc: 0.0028, prepare_batch: 4.0784
|
771 |
+
train: 9.7538
|
772 |
+
epoch_init: 0.0026, minibatch_init: 0.0026, losses_postprocess: 0.2418, kl_divergence: 0.1909, after_optimizer: 0.2499
|
773 |
+
calculate_losses: 3.4695
|
774 |
+
losses_init: 0.0014, forward_head: 0.2537, bptt_initial: 2.0322, tail: 0.2342, advantages_returns: 0.0568, losses: 0.4473
|
775 |
+
bptt: 0.3786
|
776 |
+
bptt_forward_core: 0.3600
|
777 |
+
update: 5.4474
|
778 |
+
clip: 2.7340
|
779 |
+
[2023-08-17 12:10:15,635][131794] RolloutWorker_w0 profile tree view:
|
780 |
+
wait_for_trajectories: 0.0615, enqueue_policy_requests: 2.6644, env_step: 37.2031, overhead: 3.5782, complete_rollouts: 0.0881
|
781 |
+
save_policy_outputs: 3.6697
|
782 |
+
split_output_tensors: 1.7077
|
783 |
+
[2023-08-17 12:10:15,635][131794] RolloutWorker_w7 profile tree view:
|
784 |
+
wait_for_trajectories: 0.0601, enqueue_policy_requests: 2.6081, env_step: 35.6438, overhead: 3.4090, complete_rollouts: 0.0854
|
785 |
+
save_policy_outputs: 3.4689
|
786 |
+
split_output_tensors: 1.6294
|
787 |
+
[2023-08-17 12:10:15,636][131794] Loop Runner_EvtLoop terminating...
|
788 |
+
[2023-08-17 12:10:15,637][131794] Runner profile tree view:
|
789 |
+
main_loop: 87.5323
|
790 |
+
[2023-08-17 12:10:15,637][131794] Collected {0: 4005888}, FPS: 37809.7
|
791 |
+
[2023-08-17 12:11:06,264][131794] Loading existing experiment configuration from /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json
|
792 |
+
[2023-08-17 12:11:06,264][131794] Overriding arg 'num_workers' with value 1 passed from command line
|
793 |
+
[2023-08-17 12:11:06,265][131794] Adding new argument 'no_render'=True that is not in the saved config file!
|
794 |
+
[2023-08-17 12:11:06,265][131794] Adding new argument 'save_video'=True that is not in the saved config file!
|
795 |
+
[2023-08-17 12:11:06,265][131794] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
796 |
+
[2023-08-17 12:11:06,266][131794] Adding new argument 'video_name'=None that is not in the saved config file!
|
797 |
+
[2023-08-17 12:11:06,266][131794] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
798 |
+
[2023-08-17 12:11:06,266][131794] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
799 |
+
[2023-08-17 12:11:06,266][131794] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
800 |
+
[2023-08-17 12:11:06,267][131794] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
801 |
+
[2023-08-17 12:11:06,267][131794] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
802 |
+
[2023-08-17 12:11:06,267][131794] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
803 |
+
[2023-08-17 12:11:06,268][131794] Adding new argument 'train_script'=None that is not in the saved config file!
|
804 |
+
[2023-08-17 12:11:06,268][131794] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
805 |
+
[2023-08-17 12:11:06,268][131794] Using frameskip 1 and render_action_repeat=4 for evaluation
|
806 |
+
[2023-08-17 12:11:06,274][131794] Doom resolution: 160x120, resize resolution: (128, 72)
|
807 |
+
[2023-08-17 12:11:06,275][131794] RunningMeanStd input shape: (3, 72, 128)
|
808 |
+
[2023-08-17 12:11:06,275][131794] RunningMeanStd input shape: (1,)
|
809 |
+
[2023-08-17 12:11:06,283][131794] ConvEncoder: input_channels=3
|
810 |
+
[2023-08-17 12:11:06,348][131794] Conv encoder output size: 512
|
811 |
+
[2023-08-17 12:11:06,349][131794] Policy head output size: 512
|
812 |
+
[2023-08-17 12:11:07,473][131794] Loading state from checkpoint /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
813 |
+
[2023-08-17 12:11:08,166][131794] Num frames 100...
|
814 |
+
[2023-08-17 12:11:08,225][131794] Num frames 200...
|
815 |
+
[2023-08-17 12:11:08,283][131794] Num frames 300...
|
816 |
+
[2023-08-17 12:11:08,341][131794] Num frames 400...
|
817 |
+
[2023-08-17 12:11:08,400][131794] Num frames 500...
|
818 |
+
[2023-08-17 12:11:08,457][131794] Num frames 600...
|
819 |
+
[2023-08-17 12:11:08,516][131794] Num frames 700...
|
820 |
+
[2023-08-17 12:11:08,574][131794] Num frames 800...
|
821 |
+
[2023-08-17 12:11:08,632][131794] Num frames 900...
|
822 |
+
[2023-08-17 12:11:08,694][131794] Num frames 1000...
|
823 |
+
[2023-08-17 12:11:08,753][131794] Num frames 1100...
|
824 |
+
[2023-08-17 12:11:08,811][131794] Num frames 1200...
|
825 |
+
[2023-08-17 12:11:08,869][131794] Num frames 1300...
|
826 |
+
[2023-08-17 12:11:08,928][131794] Num frames 1400...
|
827 |
+
[2023-08-17 12:11:09,003][131794] Avg episode rewards: #0: 31.400, true rewards: #0: 14.400
|
828 |
+
[2023-08-17 12:11:09,004][131794] Avg episode reward: 31.400, avg true_objective: 14.400
|
829 |
+
[2023-08-17 12:11:09,040][131794] Num frames 1500...
|
830 |
+
[2023-08-17 12:11:09,097][131794] Num frames 1600...
|
831 |
+
[2023-08-17 12:11:09,154][131794] Num frames 1700...
|
832 |
+
[2023-08-17 12:11:09,212][131794] Num frames 1800...
|
833 |
+
[2023-08-17 12:11:09,297][131794] Avg episode rewards: #0: 18.780, true rewards: #0: 9.280
|
834 |
+
[2023-08-17 12:11:09,298][131794] Avg episode reward: 18.780, avg true_objective: 9.280
|
835 |
+
[2023-08-17 12:11:09,323][131794] Num frames 1900...
|
836 |
+
[2023-08-17 12:11:09,382][131794] Num frames 2000...
|
837 |
+
[2023-08-17 12:11:09,439][131794] Num frames 2100...
|
838 |
+
[2023-08-17 12:11:09,498][131794] Num frames 2200...
|
839 |
+
[2023-08-17 12:11:09,574][131794] Avg episode rewards: #0: 14.467, true rewards: #0: 7.467
|
840 |
+
[2023-08-17 12:11:09,574][131794] Avg episode reward: 14.467, avg true_objective: 7.467
|
841 |
+
[2023-08-17 12:11:09,610][131794] Num frames 2300...
|
842 |
+
[2023-08-17 12:11:09,670][131794] Num frames 2400...
|
843 |
+
[2023-08-17 12:11:09,729][131794] Num frames 2500...
|
844 |
+
[2023-08-17 12:11:09,789][131794] Num frames 2600...
|
845 |
+
[2023-08-17 12:11:09,847][131794] Num frames 2700...
|
846 |
+
[2023-08-17 12:11:09,906][131794] Num frames 2800...
|
847 |
+
[2023-08-17 12:11:09,963][131794] Num frames 2900...
|
848 |
+
[2023-08-17 12:11:10,021][131794] Num frames 3000...
|
849 |
+
[2023-08-17 12:11:10,079][131794] Num frames 3100...
|
850 |
+
[2023-08-17 12:11:10,138][131794] Num frames 3200...
|
851 |
+
[2023-08-17 12:11:10,200][131794] Num frames 3300...
|
852 |
+
[2023-08-17 12:11:10,259][131794] Num frames 3400...
|
853 |
+
[2023-08-17 12:11:10,317][131794] Num frames 3500...
|
854 |
+
[2023-08-17 12:11:10,375][131794] Num frames 3600...
|
855 |
+
[2023-08-17 12:11:10,433][131794] Num frames 3700...
|
856 |
+
[2023-08-17 12:11:10,492][131794] Num frames 3800...
|
857 |
+
[2023-08-17 12:11:10,550][131794] Num frames 3900...
|
858 |
+
[2023-08-17 12:11:10,610][131794] Num frames 4000...
|
859 |
+
[2023-08-17 12:11:10,668][131794] Num frames 4100...
|
860 |
+
[2023-08-17 12:11:10,727][131794] Num frames 4200...
|
861 |
+
[2023-08-17 12:11:10,794][131794] Avg episode rewards: #0: 22.560, true rewards: #0: 10.560
|
862 |
+
[2023-08-17 12:11:10,794][131794] Avg episode reward: 22.560, avg true_objective: 10.560
|
863 |
+
[2023-08-17 12:11:10,840][131794] Num frames 4300...
|
864 |
+
[2023-08-17 12:11:10,898][131794] Num frames 4400...
|
865 |
+
[2023-08-17 12:11:10,959][131794] Num frames 4500...
|
866 |
+
[2023-08-17 12:11:11,017][131794] Num frames 4600...
|
867 |
+
[2023-08-17 12:11:11,076][131794] Num frames 4700...
|
868 |
+
[2023-08-17 12:11:11,134][131794] Num frames 4800...
|
869 |
+
[2023-08-17 12:11:11,242][131794] Avg episode rewards: #0: 20.392, true rewards: #0: 9.792
|
870 |
+
[2023-08-17 12:11:11,243][131794] Avg episode reward: 20.392, avg true_objective: 9.792
|
871 |
+
[2023-08-17 12:11:11,246][131794] Num frames 4900...
|
872 |
+
[2023-08-17 12:11:11,303][131794] Num frames 5000...
|
873 |
+
[2023-08-17 12:11:11,363][131794] Num frames 5100...
|
874 |
+
[2023-08-17 12:11:11,421][131794] Num frames 5200...
|
875 |
+
[2023-08-17 12:11:11,479][131794] Num frames 5300...
|
876 |
+
[2023-08-17 12:11:11,537][131794] Num frames 5400...
|
877 |
+
[2023-08-17 12:11:11,594][131794] Num frames 5500...
|
878 |
+
[2023-08-17 12:11:11,651][131794] Num frames 5600...
|
879 |
+
[2023-08-17 12:11:11,709][131794] Num frames 5700...
|
880 |
+
[2023-08-17 12:11:11,799][131794] Avg episode rewards: #0: 19.933, true rewards: #0: 9.600
|
881 |
+
[2023-08-17 12:11:11,799][131794] Avg episode reward: 19.933, avg true_objective: 9.600
|
882 |
+
[2023-08-17 12:11:11,823][131794] Num frames 5800...
|
883 |
+
[2023-08-17 12:11:11,881][131794] Num frames 5900...
|
884 |
+
[2023-08-17 12:11:11,940][131794] Num frames 6000...
|
885 |
+
[2023-08-17 12:11:11,998][131794] Num frames 6100...
|
886 |
+
[2023-08-17 12:11:12,056][131794] Num frames 6200...
|
887 |
+
[2023-08-17 12:11:12,113][131794] Num frames 6300...
|
888 |
+
[2023-08-17 12:11:12,170][131794] Num frames 6400...
|
889 |
+
[2023-08-17 12:11:12,260][131794] Avg episode rewards: #0: 19.234, true rewards: #0: 9.234
|
890 |
+
[2023-08-17 12:11:12,260][131794] Avg episode reward: 19.234, avg true_objective: 9.234
|
891 |
+
[2023-08-17 12:11:12,282][131794] Num frames 6500...
|
892 |
+
[2023-08-17 12:11:12,340][131794] Num frames 6600...
|
893 |
+
[2023-08-17 12:11:12,398][131794] Num frames 6700...
|
894 |
+
[2023-08-17 12:11:12,455][131794] Num frames 6800...
|
895 |
+
[2023-08-17 12:11:12,513][131794] Num frames 6900...
|
896 |
+
[2023-08-17 12:11:12,609][131794] Avg episode rewards: #0: 17.720, true rewards: #0: 8.720
|
897 |
+
[2023-08-17 12:11:12,609][131794] Avg episode reward: 17.720, avg true_objective: 8.720
|
898 |
+
[2023-08-17 12:11:12,624][131794] Num frames 7000...
|
899 |
+
[2023-08-17 12:11:12,683][131794] Num frames 7100...
|
900 |
+
[2023-08-17 12:11:12,757][131794] Avg episode rewards: #0: 16.040, true rewards: #0: 7.929
|
901 |
+
[2023-08-17 12:11:12,757][131794] Avg episode reward: 16.040, avg true_objective: 7.929
|
902 |
+
[2023-08-17 12:11:12,794][131794] Num frames 7200...
|
903 |
+
[2023-08-17 12:11:12,852][131794] Num frames 7300...
|
904 |
+
[2023-08-17 12:11:12,910][131794] Num frames 7400...
|
905 |
+
[2023-08-17 12:11:12,968][131794] Num frames 7500...
|
906 |
+
[2023-08-17 12:11:13,027][131794] Num frames 7600...
|
907 |
+
[2023-08-17 12:11:13,084][131794] Num frames 7700...
|
908 |
+
[2023-08-17 12:11:13,142][131794] Num frames 7800...
|
909 |
+
[2023-08-17 12:11:13,200][131794] Num frames 7900...
|
910 |
+
[2023-08-17 12:11:13,298][131794] Avg episode rewards: #0: 16.278, true rewards: #0: 7.978
|
911 |
+
[2023-08-17 12:11:13,299][131794] Avg episode reward: 16.278, avg true_objective: 7.978
|
912 |
+
[2023-08-17 12:11:20,895][131794] Replay video saved to /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!
|
913 |
+
[2023-08-17 12:52:38,482][131794] Loading existing experiment configuration from /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json
|
914 |
+
[2023-08-17 12:52:38,483][131794] Overriding arg 'num_workers' with value 1 passed from command line
|
915 |
+
[2023-08-17 12:52:38,483][131794] Adding new argument 'no_render'=True that is not in the saved config file!
|
916 |
+
[2023-08-17 12:52:38,483][131794] Adding new argument 'save_video'=True that is not in the saved config file!
|
917 |
+
[2023-08-17 12:52:38,484][131794] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
918 |
+
[2023-08-17 12:52:38,484][131794] Adding new argument 'video_name'=None that is not in the saved config file!
|
919 |
+
[2023-08-17 12:52:38,485][131794] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
920 |
+
[2023-08-17 12:52:38,485][131794] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
921 |
+
[2023-08-17 12:52:38,486][131794] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
922 |
+
[2023-08-17 12:52:38,486][131794] Adding new argument 'hf_repository'='patonw/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
923 |
+
[2023-08-17 12:52:38,486][131794] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
924 |
+
[2023-08-17 12:52:38,487][131794] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
925 |
+
[2023-08-17 12:52:38,487][131794] Adding new argument 'train_script'=None that is not in the saved config file!
|
926 |
+
[2023-08-17 12:52:38,487][131794] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
927 |
+
[2023-08-17 12:52:38,488][131794] Using frameskip 1 and render_action_repeat=4 for evaluation
|
928 |
+
[2023-08-17 12:52:38,491][131794] RunningMeanStd input shape: (3, 72, 128)
|
929 |
+
[2023-08-17 12:52:38,492][131794] RunningMeanStd input shape: (1,)
|
930 |
+
[2023-08-17 12:52:38,497][131794] ConvEncoder: input_channels=3
|
931 |
+
[2023-08-17 12:52:38,518][131794] Conv encoder output size: 512
|
932 |
+
[2023-08-17 12:52:38,519][131794] Policy head output size: 512
|
933 |
+
[2023-08-17 12:52:38,534][131794] Loading state from checkpoint /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
934 |
+
[2023-08-17 12:52:38,832][131794] Num frames 100...
|
935 |
+
[2023-08-17 12:52:38,889][131794] Num frames 200...
|
936 |
+
[2023-08-17 12:52:38,952][131794] Num frames 300...
|
937 |
+
[2023-08-17 12:52:39,009][131794] Num frames 400...
|
938 |
+
[2023-08-17 12:52:39,065][131794] Num frames 500...
|
939 |
+
[2023-08-17 12:52:39,122][131794] Num frames 600...
|
940 |
+
[2023-08-17 12:52:39,178][131794] Num frames 700...
|
941 |
+
[2023-08-17 12:52:39,237][131794] Num frames 800...
|
942 |
+
[2023-08-17 12:52:39,293][131794] Num frames 900...
|
943 |
+
[2023-08-17 12:52:39,349][131794] Num frames 1000...
|
944 |
+
[2023-08-17 12:52:39,406][131794] Num frames 1100...
|
945 |
+
[2023-08-17 12:52:39,462][131794] Num frames 1200...
|
946 |
+
[2023-08-17 12:52:39,520][131794] Num frames 1300...
|
947 |
+
[2023-08-17 12:52:39,576][131794] Num frames 1400...
|
948 |
+
[2023-08-17 12:52:39,633][131794] Num frames 1500...
|
949 |
+
[2023-08-17 12:52:39,691][131794] Num frames 1600...
|
950 |
+
[2023-08-17 12:52:39,748][131794] Num frames 1700...
|
951 |
+
[2023-08-17 12:52:39,804][131794] Num frames 1800...
|
952 |
+
[2023-08-17 12:52:39,860][131794] Num frames 1900...
|
953 |
+
[2023-08-17 12:52:39,917][131794] Num frames 2000...
|
954 |
+
[2023-08-17 12:52:39,997][131794] Avg episode rewards: #0: 47.479, true rewards: #0: 20.480
|
955 |
+
[2023-08-17 12:52:39,998][131794] Avg episode reward: 47.479, avg true_objective: 20.480
|
956 |
+
[2023-08-17 12:52:40,027][131794] Num frames 2100...
|
957 |
+
[2023-08-17 12:52:40,084][131794] Num frames 2200...
|
958 |
+
[2023-08-17 12:52:40,142][131794] Num frames 2300...
|
959 |
+
[2023-08-17 12:52:40,199][131794] Num frames 2400...
|
960 |
+
[2023-08-17 12:52:40,256][131794] Num frames 2500...
|
961 |
+
[2023-08-17 12:52:40,312][131794] Num frames 2600...
|
962 |
+
[2023-08-17 12:52:40,368][131794] Num frames 2700...
|
963 |
+
[2023-08-17 12:52:40,424][131794] Num frames 2800...
|
964 |
+
[2023-08-17 12:52:40,522][131794] Avg episode rewards: #0: 30.900, true rewards: #0: 14.400
|
965 |
+
[2023-08-17 12:52:40,523][131794] Avg episode reward: 30.900, avg true_objective: 14.400
|
966 |
+
[2023-08-17 12:52:40,535][131794] Num frames 2900...
|
967 |
+
[2023-08-17 12:52:40,591][131794] Num frames 3000...
|
968 |
+
[2023-08-17 12:52:40,648][131794] Num frames 3100...
|
969 |
+
[2023-08-17 12:52:40,704][131794] Num frames 3200...
|
970 |
+
[2023-08-17 12:52:40,760][131794] Num frames 3300...
|
971 |
+
[2023-08-17 12:52:40,815][131794] Num frames 3400...
|
972 |
+
[2023-08-17 12:52:40,899][131794] Avg episode rewards: #0: 23.853, true rewards: #0: 11.520
|
973 |
+
[2023-08-17 12:52:40,899][131794] Avg episode reward: 23.853, avg true_objective: 11.520
|
974 |
+
[2023-08-17 12:52:40,925][131794] Num frames 3500...
|
975 |
+
[2023-08-17 12:52:40,981][131794] Num frames 3600...
|
976 |
+
[2023-08-17 12:52:41,039][131794] Num frames 3700...
|
977 |
+
[2023-08-17 12:52:41,096][131794] Num frames 3800...
|
978 |
+
[2023-08-17 12:52:41,153][131794] Num frames 3900...
|
979 |
+
[2023-08-17 12:52:41,211][131794] Num frames 4000...
|
980 |
+
[2023-08-17 12:52:41,270][131794] Num frames 4100...
|
981 |
+
[2023-08-17 12:52:41,328][131794] Num frames 4200...
|
982 |
+
[2023-08-17 12:52:41,386][131794] Num frames 4300...
|
983 |
+
[2023-08-17 12:52:41,446][131794] Num frames 4400...
|
984 |
+
[2023-08-17 12:52:41,525][131794] Avg episode rewards: #0: 22.870, true rewards: #0: 11.120
|
985 |
+
[2023-08-17 12:52:41,526][131794] Avg episode reward: 22.870, avg true_objective: 11.120
|
986 |
+
[2023-08-17 12:52:41,555][131794] Num frames 4500...
|
987 |
+
[2023-08-17 12:52:41,612][131794] Num frames 4600...
|
988 |
+
[2023-08-17 12:52:41,668][131794] Num frames 4700...
|
989 |
+
[2023-08-17 12:52:41,725][131794] Num frames 4800...
|
990 |
+
[2023-08-17 12:52:41,781][131794] Num frames 4900...
|
991 |
+
[2023-08-17 12:52:41,868][131794] Avg episode rewards: #0: 20.322, true rewards: #0: 9.922
|
992 |
+
[2023-08-17 12:52:41,869][131794] Avg episode reward: 20.322, avg true_objective: 9.922
|
993 |
+
[2023-08-17 12:52:41,891][131794] Num frames 5000...
|
994 |
+
[2023-08-17 12:52:41,948][131794] Num frames 5100...
|
995 |
+
[2023-08-17 12:52:42,004][131794] Num frames 5200...
|
996 |
+
[2023-08-17 12:52:42,063][131794] Num frames 5300...
|
997 |
+
[2023-08-17 12:52:42,119][131794] Num frames 5400...
|
998 |
+
[2023-08-17 12:52:42,175][131794] Num frames 5500...
|
999 |
+
[2023-08-17 12:52:42,231][131794] Num frames 5600...
|
1000 |
+
[2023-08-17 12:52:42,287][131794] Num frames 5700...
|
1001 |
+
[2023-08-17 12:52:42,344][131794] Num frames 5800...
|
1002 |
+
[2023-08-17 12:52:42,400][131794] Num frames 5900...
|
1003 |
+
[2023-08-17 12:52:42,456][131794] Num frames 6000...
|
1004 |
+
[2023-08-17 12:52:42,513][131794] Num frames 6100...
|
1005 |
+
[2023-08-17 12:52:42,567][131794] Num frames 6200...
|
1006 |
+
[2023-08-17 12:52:42,621][131794] Num frames 6300...
|
1007 |
+
[2023-08-17 12:52:42,675][131794] Num frames 6400...
|
1008 |
+
[2023-08-17 12:52:42,762][131794] Avg episode rewards: #0: 22.108, true rewards: #0: 10.775
|
1009 |
+
[2023-08-17 12:52:42,763][131794] Avg episode reward: 22.108, avg true_objective: 10.775
|
1010 |
+
[2023-08-17 12:52:42,781][131794] Num frames 6500...
|
1011 |
+
[2023-08-17 12:52:42,836][131794] Num frames 6600...
|
1012 |
+
[2023-08-17 12:52:42,889][131794] Num frames 6700...
|
1013 |
+
[2023-08-17 12:52:42,944][131794] Num frames 6800...
|
1014 |
+
[2023-08-17 12:52:42,997][131794] Num frames 6900...
|
1015 |
+
[2023-08-17 12:52:43,051][131794] Num frames 7000...
|
1016 |
+
[2023-08-17 12:52:43,107][131794] Num frames 7100...
|
1017 |
+
[2023-08-17 12:52:43,162][131794] Num frames 7200...
|
1018 |
+
[2023-08-17 12:52:43,217][131794] Num frames 7300...
|
1019 |
+
[2023-08-17 12:52:43,285][131794] Avg episode rewards: #0: 21.751, true rewards: #0: 10.466
|
1020 |
+
[2023-08-17 12:52:43,285][131794] Avg episode reward: 21.751, avg true_objective: 10.466
|
1021 |
+
[2023-08-17 12:52:43,325][131794] Num frames 7400...
|
1022 |
+
[2023-08-17 12:52:43,381][131794] Num frames 7500...
|
1023 |
+
[2023-08-17 12:52:43,435][131794] Num frames 7600...
|
1024 |
+
[2023-08-17 12:52:43,490][131794] Num frames 7700...
|
1025 |
+
[2023-08-17 12:52:43,544][131794] Num frames 7800...
|
1026 |
+
[2023-08-17 12:52:43,602][131794] Num frames 7900...
|
1027 |
+
[2023-08-17 12:52:43,657][131794] Num frames 8000...
|
1028 |
+
[2023-08-17 12:52:43,711][131794] Num frames 8100...
|
1029 |
+
[2023-08-17 12:52:43,766][131794] Num frames 8200...
|
1030 |
+
[2023-08-17 12:52:43,824][131794] Num frames 8300...
|
1031 |
+
[2023-08-17 12:52:43,881][131794] Num frames 8400...
|
1032 |
+
[2023-08-17 12:52:43,959][131794] Avg episode rewards: #0: 22.183, true rewards: #0: 10.557
|
1033 |
+
[2023-08-17 12:52:43,960][131794] Avg episode reward: 22.183, avg true_objective: 10.557
|
1034 |
+
[2023-08-17 12:52:43,991][131794] Num frames 8500...
|
1035 |
+
[2023-08-17 12:52:44,048][131794] Num frames 8600...
|
1036 |
+
[2023-08-17 12:52:44,105][131794] Num frames 8700...
|
1037 |
+
[2023-08-17 12:52:44,162][131794] Num frames 8800...
|
1038 |
+
[2023-08-17 12:52:44,218][131794] Num frames 8900...
|
1039 |
+
[2023-08-17 12:52:44,272][131794] Num frames 9000...
|
1040 |
+
[2023-08-17 12:52:44,328][131794] Num frames 9100...
|
1041 |
+
[2023-08-17 12:52:44,383][131794] Num frames 9200...
|
1042 |
+
[2023-08-17 12:52:44,437][131794] Num frames 9300...
|
1043 |
+
[2023-08-17 12:52:44,492][131794] Num frames 9400...
|
1044 |
+
[2023-08-17 12:52:44,548][131794] Avg episode rewards: #0: 22.229, true rewards: #0: 10.451
|
1045 |
+
[2023-08-17 12:52:44,549][131794] Avg episode reward: 22.229, avg true_objective: 10.451
|
1046 |
+
[2023-08-17 12:52:44,599][131794] Num frames 9500...
|
1047 |
+
[2023-08-17 12:52:44,655][131794] Num frames 9600...
|
1048 |
+
[2023-08-17 12:52:44,709][131794] Num frames 9700...
|
1049 |
+
[2023-08-17 12:52:44,763][131794] Num frames 9800...
|
1050 |
+
[2023-08-17 12:52:44,835][131794] Avg episode rewards: #0: 20.835, true rewards: #0: 9.835
|
1051 |
+
[2023-08-17 12:52:44,835][131794] Avg episode reward: 20.835, avg true_objective: 9.835
|
1052 |
+
[2023-08-17 12:52:54,306][131794] Replay video saved to /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!
|