patonw commited on
Commit
faca62a
1 Parent(s): d3e6df4

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
.summary/0/events.out.tfevents.1692297288.muon ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f77a453b82a7dd849f60596a33ec64bb9547a7a2b04ec5077c39efe1f3bd8451
3
+ size 20541
.summary/0/events.out.tfevents.1692299326.muon ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ff3ed53d73d06bc18d378198081089b4eed5359b619e88a44b5d9dee4c2e602
3
+ size 80896
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: doom_health_gathering_supreme
15
+ type: doom_health_gathering_supreme
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 9.83 +/- 4.64
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r patonw/rl_course_vizdoom_health_gathering_supreme
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000000838_3432448_reward_21.885.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f506d94602a55b5dab0ddba2ee6800ae90a47b4ef8aed2ff7bdbf91effe7ca6d
3
+ size 34928806
checkpoint_p0/checkpoint_000000170_696320.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:770c35795564017cc9f7222f55bdec6247a6a7838317eb962e788f6df7ed7df7
3
+ size 34929028
checkpoint_p0/checkpoint_000000978_4005888.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f0a29e7c309070dd5148bfb923ac215fba92c3fa1fedde79d86bbf64128edf1
3
+ size 34929220
config.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "doom_health_gathering_supreme",
5
+ "experiment": "default_experiment",
6
+ "train_dir": "/home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir",
7
+ "restart_behavior": "resume",
8
+ "device": "gpu",
9
+ "seed": null,
10
+ "num_policies": 1,
11
+ "async_rl": true,
12
+ "serial_mode": false,
13
+ "batched_sampling": false,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 2,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 8,
19
+ "num_envs_per_worker": 4,
20
+ "batch_size": 1024,
21
+ "num_batches_per_epoch": 1,
22
+ "num_epochs": 1,
23
+ "rollout": 32,
24
+ "recurrence": 32,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 1.0,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": false,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.001,
32
+ "value_loss_coeff": 0.5,
33
+ "kl_loss_coeff": 0.0,
34
+ "exploration_loss": "symmetric_kl",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.1,
37
+ "ppo_clip_value": 0.2,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-06,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 4.0,
46
+ "learning_rate": 0.0001,
47
+ "lr_schedule": "constant",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
+ "obs_subtract_mean": 0.0,
52
+ "obs_scale": 255.0,
53
+ "normalize_input": true,
54
+ "normalize_input_keys": null,
55
+ "decorrelate_experience_max_seconds": 0,
56
+ "decorrelate_envs_on_one_worker": true,
57
+ "actor_worker_gpus": [],
58
+ "set_workers_cpu_affinity": true,
59
+ "force_envs_single_thread": false,
60
+ "default_niceness": 0,
61
+ "log_to_file": true,
62
+ "experiment_summaries_interval": 10,
63
+ "flush_summaries_interval": 30,
64
+ "stats_avg": 100,
65
+ "summaries_use_frameskip": true,
66
+ "heartbeat_interval": 20,
67
+ "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 4000000,
69
+ "train_for_seconds": 10000000000,
70
+ "save_every_sec": 120,
71
+ "keep_checkpoints": 2,
72
+ "load_checkpoint_kind": "latest",
73
+ "save_milestones_sec": -1,
74
+ "save_best_every_sec": 5,
75
+ "save_best_metric": "reward",
76
+ "save_best_after": 100000,
77
+ "benchmark": false,
78
+ "encoder_mlp_layers": [
79
+ 512,
80
+ 512
81
+ ],
82
+ "encoder_conv_architecture": "convnet_simple",
83
+ "encoder_conv_mlp_layers": [
84
+ 512
85
+ ],
86
+ "use_rnn": true,
87
+ "rnn_size": 512,
88
+ "rnn_type": "gru",
89
+ "rnn_num_layers": 1,
90
+ "decoder_mlp_layers": [],
91
+ "nonlinearity": "elu",
92
+ "policy_initialization": "orthogonal",
93
+ "policy_init_gain": 1.0,
94
+ "actor_critic_share_weights": true,
95
+ "adaptive_stddev": true,
96
+ "continuous_tanh_scale": 0.0,
97
+ "initial_stddev": 1.0,
98
+ "use_env_info_cache": false,
99
+ "env_gpu_actions": false,
100
+ "env_gpu_observations": true,
101
+ "env_frameskip": 4,
102
+ "env_framestack": 1,
103
+ "pixel_format": "CHW",
104
+ "use_record_episode_statistics": false,
105
+ "with_wandb": false,
106
+ "wandb_user": null,
107
+ "wandb_project": "sample_factory",
108
+ "wandb_group": null,
109
+ "wandb_job_type": "SF",
110
+ "wandb_tags": [],
111
+ "with_pbt": false,
112
+ "pbt_mix_policies_in_one_env": true,
113
+ "pbt_period_env_steps": 5000000,
114
+ "pbt_start_mutation": 20000000,
115
+ "pbt_replace_fraction": 0.3,
116
+ "pbt_mutation_rate": 0.15,
117
+ "pbt_replace_reward_gap": 0.1,
118
+ "pbt_replace_reward_gap_absolute": 1e-06,
119
+ "pbt_optimize_gamma": false,
120
+ "pbt_target_objective": "true_objective",
121
+ "pbt_perturb_min": 1.1,
122
+ "pbt_perturb_max": 1.5,
123
+ "num_agents": -1,
124
+ "num_humans": 0,
125
+ "num_bots": -1,
126
+ "start_bot_difficulty": null,
127
+ "timelimit": null,
128
+ "res_w": 128,
129
+ "res_h": 72,
130
+ "wide_aspect_ratio": false,
131
+ "eval_env_frameskip": 1,
132
+ "fps": 35,
133
+ "command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
134
+ "cli_args": {
135
+ "env": "doom_health_gathering_supreme",
136
+ "num_workers": 8,
137
+ "num_envs_per_worker": 4,
138
+ "train_for_env_steps": 4000000
139
+ },
140
+ "git_hash": "336df5a551fea3a2cf40925bf3083db6b4518c91",
141
+ "git_repo_name": "https://github.com/huggingface/deep-rl-class"
142
+ }
git.diff ADDED
The diff for this file is too large to render. See raw diff
 
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33bf7c09ae64a3500f531643c6c22988477b4d6a5be6c98d93ef82310c705f4a
3
+ size 18208913
sf_log.txt ADDED
@@ -0,0 +1,1052 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-17 11:34:50,384][121125] Saving configuration to /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json...
2
+ [2023-08-17 11:34:50,404][121125] Rollout worker 0 uses device cpu
3
+ [2023-08-17 11:34:50,404][121125] Rollout worker 1 uses device cpu
4
+ [2023-08-17 11:34:50,405][121125] Rollout worker 2 uses device cpu
5
+ [2023-08-17 11:34:50,405][121125] Rollout worker 3 uses device cpu
6
+ [2023-08-17 11:34:50,406][121125] Rollout worker 4 uses device cpu
7
+ [2023-08-17 11:34:50,406][121125] Rollout worker 5 uses device cpu
8
+ [2023-08-17 11:34:50,406][121125] Rollout worker 6 uses device cpu
9
+ [2023-08-17 11:34:50,406][121125] Rollout worker 7 uses device cpu
10
+ [2023-08-17 11:34:50,440][121125] Using GPUs [0] for process 0 (actually maps to GPUs [0])
11
+ [2023-08-17 11:34:50,441][121125] InferenceWorker_p0-w0: min num requests: 2
12
+ [2023-08-17 11:34:50,458][121125] Starting all processes...
13
+ [2023-08-17 11:34:50,458][121125] Starting process learner_proc0
14
+ [2023-08-17 11:34:50,508][121125] Starting all processes...
15
+ [2023-08-17 11:34:50,512][121125] Starting process inference_proc0-0
16
+ [2023-08-17 11:34:50,512][121125] Starting process rollout_proc0
17
+ [2023-08-17 11:34:50,513][121125] Starting process rollout_proc1
18
+ [2023-08-17 11:34:50,514][121125] Starting process rollout_proc2
19
+ [2023-08-17 11:34:50,514][121125] Starting process rollout_proc3
20
+ [2023-08-17 11:34:50,514][121125] Starting process rollout_proc4
21
+ [2023-08-17 11:34:50,514][121125] Starting process rollout_proc5
22
+ [2023-08-17 11:34:50,514][121125] Starting process rollout_proc6
23
+ [2023-08-17 11:34:50,515][121125] Starting process rollout_proc7
24
+ [2023-08-17 11:34:51,414][121211] Using GPUs [0] for process 0 (actually maps to GPUs [0])
25
+ [2023-08-17 11:34:51,414][121211] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
26
+ [2023-08-17 11:34:51,424][121211] Num visible devices: 1
27
+ [2023-08-17 11:34:51,443][121211] Starting seed is not provided
28
+ [2023-08-17 11:34:51,444][121211] Using GPUs [0] for process 0 (actually maps to GPUs [0])
29
+ [2023-08-17 11:34:51,444][121211] Initializing actor-critic model on device cuda:0
30
+ [2023-08-17 11:34:51,444][121211] RunningMeanStd input shape: (3, 72, 128)
31
+ [2023-08-17 11:34:51,445][121211] RunningMeanStd input shape: (1,)
32
+ [2023-08-17 11:34:51,456][121211] ConvEncoder: input_channels=3
33
+ [2023-08-17 11:34:51,528][121211] Conv encoder output size: 512
34
+ [2023-08-17 11:34:51,528][121211] Policy head output size: 512
35
+ [2023-08-17 11:34:51,541][121211] Created Actor Critic model with architecture:
36
+ [2023-08-17 11:34:51,541][121211] ActorCriticSharedWeights(
37
+ (obs_normalizer): ObservationNormalizer(
38
+ (running_mean_std): RunningMeanStdDictInPlace(
39
+ (running_mean_std): ModuleDict(
40
+ (obs): RunningMeanStdInPlace()
41
+ )
42
+ )
43
+ )
44
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
45
+ (encoder): VizdoomEncoder(
46
+ (basic_encoder): ConvEncoder(
47
+ (enc): RecursiveScriptModule(
48
+ original_name=ConvEncoderImpl
49
+ (conv_head): RecursiveScriptModule(
50
+ original_name=Sequential
51
+ (0): RecursiveScriptModule(original_name=Conv2d)
52
+ (1): RecursiveScriptModule(original_name=ELU)
53
+ (2): RecursiveScriptModule(original_name=Conv2d)
54
+ (3): RecursiveScriptModule(original_name=ELU)
55
+ (4): RecursiveScriptModule(original_name=Conv2d)
56
+ (5): RecursiveScriptModule(original_name=ELU)
57
+ )
58
+ (mlp_layers): RecursiveScriptModule(
59
+ original_name=Sequential
60
+ (0): RecursiveScriptModule(original_name=Linear)
61
+ (1): RecursiveScriptModule(original_name=ELU)
62
+ )
63
+ )
64
+ )
65
+ )
66
+ (core): ModelCoreRNN(
67
+ (core): GRU(512, 512)
68
+ )
69
+ (decoder): MlpDecoder(
70
+ (mlp): Identity()
71
+ )
72
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
73
+ (action_parameterization): ActionParameterizationDefault(
74
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
75
+ )
76
+ )
77
+ [2023-08-17 11:34:51,559][121232] Worker 6 uses CPU cores [18, 19, 20]
78
+ [2023-08-17 11:34:51,561][121228] Worker 3 uses CPU cores [9, 10, 11]
79
+ [2023-08-17 11:34:51,567][121230] Worker 5 uses CPU cores [15, 16, 17]
80
+ [2023-08-17 11:34:51,567][121226] Worker 0 uses CPU cores [0, 1, 2]
81
+ [2023-08-17 11:34:51,573][121224] Using GPUs [0] for process 0 (actually maps to GPUs [0])
82
+ [2023-08-17 11:34:51,573][121224] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
83
+ [2023-08-17 11:34:51,581][121224] Num visible devices: 1
84
+ [2023-08-17 11:34:51,590][121225] Worker 1 uses CPU cores [3, 4, 5]
85
+ [2023-08-17 11:34:51,593][121229] Worker 4 uses CPU cores [12, 13, 14]
86
+ [2023-08-17 11:34:51,613][121231] Worker 7 uses CPU cores [21, 22, 23]
87
+ [2023-08-17 11:34:51,628][121227] Worker 2 uses CPU cores [6, 7, 8]
88
+ [2023-08-17 11:34:53,156][121211] Using optimizer <class 'torch.optim.adam.Adam'>
89
+ [2023-08-17 11:34:53,157][121211] No checkpoints found
90
+ [2023-08-17 11:34:53,157][121211] Did not load from checkpoint, starting from scratch!
91
+ [2023-08-17 11:34:53,157][121211] Initialized policy 0 weights for model version 0
92
+ [2023-08-17 11:34:53,158][121211] LearnerWorker_p0 finished initialization!
93
+ [2023-08-17 11:34:53,158][121211] Using GPUs [0] for process 0 (actually maps to GPUs [0])
94
+ [2023-08-17 11:34:53,455][121125] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
95
+ [2023-08-17 11:34:53,703][121224] RunningMeanStd input shape: (3, 72, 128)
96
+ [2023-08-17 11:34:53,703][121224] RunningMeanStd input shape: (1,)
97
+ [2023-08-17 11:34:53,710][121224] ConvEncoder: input_channels=3
98
+ [2023-08-17 11:34:53,760][121224] Conv encoder output size: 512
99
+ [2023-08-17 11:34:53,760][121224] Policy head output size: 512
100
+ [2023-08-17 11:34:54,313][121125] Inference worker 0-0 is ready!
101
+ [2023-08-17 11:34:54,314][121125] All inference workers are ready! Signal rollout workers to start!
102
+ [2023-08-17 11:34:54,329][121229] Doom resolution: 160x120, resize resolution: (128, 72)
103
+ [2023-08-17 11:34:54,329][121226] Doom resolution: 160x120, resize resolution: (128, 72)
104
+ [2023-08-17 11:34:54,329][121231] Doom resolution: 160x120, resize resolution: (128, 72)
105
+ [2023-08-17 11:34:54,329][121232] Doom resolution: 160x120, resize resolution: (128, 72)
106
+ [2023-08-17 11:34:54,330][121227] Doom resolution: 160x120, resize resolution: (128, 72)
107
+ [2023-08-17 11:34:54,330][121228] Doom resolution: 160x120, resize resolution: (128, 72)
108
+ [2023-08-17 11:34:54,333][121225] Doom resolution: 160x120, resize resolution: (128, 72)
109
+ [2023-08-17 11:34:54,333][121230] Doom resolution: 160x120, resize resolution: (128, 72)
110
+ [2023-08-17 11:34:54,460][121227] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
111
+ [2023-08-17 11:34:54,461][121227] EvtLoop [rollout_proc2_evt_loop, process=rollout_proc2] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
112
+ Traceback (most recent call last):
113
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
114
+ self.game.init()
115
+ vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
116
+
117
+ During handling of the above exception, another exception occurred:
118
+
119
+ Traceback (most recent call last):
120
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
121
+ slot_callable(*args)
122
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
123
+ env_runner.init(self.timing)
124
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
125
+ self._reset()
126
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
127
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
128
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 414, in reset
129
+ return self.env.reset(seed=seed, options=options)
130
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
131
+ obs, info = self.env.reset(**kwargs)
132
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
133
+ obs, info = self.env.reset(**kwargs)
134
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
135
+ return self.env.reset(**kwargs)
136
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 462, in reset
137
+ obs, info = self.env.reset(seed=seed, options=options)
138
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 82, in reset
139
+ obs, info = self.env.reset(**kwargs)
140
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 414, in reset
141
+ return self.env.reset(seed=seed, options=options)
142
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
143
+ return self.env.reset(**kwargs)
144
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
145
+ self._ensure_initialized()
146
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
147
+ self.initialize()
148
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
149
+ self._game_init()
150
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
151
+ raise EnvCriticalError()
152
+ sample_factory.envs.env_utils.EnvCriticalError
153
+ [2023-08-17 11:34:54,462][121227] Unhandled exception in evt loop rollout_proc2_evt_loop
154
+ [2023-08-17 11:34:54,535][121231] Decorrelating experience for 0 frames...
155
+ [2023-08-17 11:34:54,544][121226] Decorrelating experience for 0 frames...
156
+ [2023-08-17 11:34:54,548][121232] Decorrelating experience for 0 frames...
157
+ [2023-08-17 11:34:54,550][121228] Decorrelating experience for 0 frames...
158
+ [2023-08-17 11:34:54,550][121230] Decorrelating experience for 0 frames...
159
+ [2023-08-17 11:34:54,728][121231] Decorrelating experience for 32 frames...
160
+ [2023-08-17 11:34:54,746][121229] Decorrelating experience for 0 frames...
161
+ [2023-08-17 11:34:54,747][121228] Decorrelating experience for 32 frames...
162
+ [2023-08-17 11:34:54,747][121230] Decorrelating experience for 32 frames...
163
+ [2023-08-17 11:34:54,748][121232] Decorrelating experience for 32 frames...
164
+ [2023-08-17 11:34:54,934][121229] Decorrelating experience for 32 frames...
165
+ [2023-08-17 11:34:54,934][121226] Decorrelating experience for 32 frames...
166
+ [2023-08-17 11:34:54,954][121230] Decorrelating experience for 64 frames...
167
+ [2023-08-17 11:34:54,954][121228] Decorrelating experience for 64 frames...
168
+ [2023-08-17 11:34:54,955][121232] Decorrelating experience for 64 frames...
169
+ [2023-08-17 11:34:55,137][121226] Decorrelating experience for 64 frames...
170
+ [2023-08-17 11:34:55,138][121229] Decorrelating experience for 64 frames...
171
+ [2023-08-17 11:34:55,138][121231] Decorrelating experience for 64 frames...
172
+ [2023-08-17 11:34:55,138][121225] Decorrelating experience for 0 frames...
173
+ [2023-08-17 11:34:55,144][121232] Decorrelating experience for 96 frames...
174
+ [2023-08-17 11:34:55,336][121225] Decorrelating experience for 32 frames...
175
+ [2023-08-17 11:34:55,338][121231] Decorrelating experience for 96 frames...
176
+ [2023-08-17 11:34:55,367][121228] Decorrelating experience for 96 frames...
177
+ [2023-08-17 11:34:55,519][121225] Decorrelating experience for 64 frames...
178
+ [2023-08-17 11:34:55,524][121226] Decorrelating experience for 96 frames...
179
+ [2023-08-17 11:34:55,734][121230] Decorrelating experience for 96 frames...
180
+ [2023-08-17 11:34:55,737][121229] Decorrelating experience for 96 frames...
181
+ [2023-08-17 11:34:55,742][121225] Decorrelating experience for 96 frames...
182
+ [2023-08-17 11:34:56,232][121211] Signal inference workers to stop experience collection...
183
+ [2023-08-17 11:34:56,234][121224] InferenceWorker_p0-w0: stopping experience collection
184
+ [2023-08-17 11:34:57,320][121211] Signal inference workers to resume experience collection...
185
+ [2023-08-17 11:34:57,320][121224] InferenceWorker_p0-w0: resuming experience collection
186
+ [2023-08-17 11:34:58,455][121125] Fps is (10 sec: 6553.7, 60 sec: 6553.7, 300 sec: 6553.7). Total num frames: 32768. Throughput: 0: 566.8. Samples: 2834. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
187
+ [2023-08-17 11:34:58,456][121125] Avg episode reward: [(0, '3.897')]
188
+ [2023-08-17 11:34:58,583][121224] Updated weights for policy 0, policy_version 10 (0.0188)
189
+ [2023-08-17 11:34:59,640][121224] Updated weights for policy 0, policy_version 20 (0.0006)
190
+ [2023-08-17 11:35:00,607][121224] Updated weights for policy 0, policy_version 30 (0.0005)
191
+ [2023-08-17 11:35:01,567][121224] Updated weights for policy 0, policy_version 40 (0.0005)
192
+ [2023-08-17 11:35:02,584][121224] Updated weights for policy 0, policy_version 50 (0.0006)
193
+ [2023-08-17 11:35:03,455][121125] Fps is (10 sec: 23347.3, 60 sec: 23347.3, 300 sec: 23347.3). Total num frames: 233472. Throughput: 0: 5847.0. Samples: 58470. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
194
+ [2023-08-17 11:35:03,456][121125] Avg episode reward: [(0, '4.655')]
195
+ [2023-08-17 11:35:03,457][121211] Saving new best policy, reward=4.655!
196
+ [2023-08-17 11:35:03,725][121224] Updated weights for policy 0, policy_version 60 (0.0006)
197
+ [2023-08-17 11:35:04,740][121224] Updated weights for policy 0, policy_version 70 (0.0006)
198
+ [2023-08-17 11:35:05,714][121224] Updated weights for policy 0, policy_version 80 (0.0005)
199
+ [2023-08-17 11:35:06,667][121224] Updated weights for policy 0, policy_version 90 (0.0005)
200
+ [2023-08-17 11:35:07,660][121224] Updated weights for policy 0, policy_version 100 (0.0005)
201
+ [2023-08-17 11:35:08,455][121125] Fps is (10 sec: 40959.9, 60 sec: 29491.3, 300 sec: 29491.3). Total num frames: 442368. Throughput: 0: 5926.0. Samples: 88890. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
202
+ [2023-08-17 11:35:08,456][121125] Avg episode reward: [(0, '4.598')]
203
+ [2023-08-17 11:35:08,628][121224] Updated weights for policy 0, policy_version 110 (0.0005)
204
+ [2023-08-17 11:35:09,699][121224] Updated weights for policy 0, policy_version 120 (0.0006)
205
+ [2023-08-17 11:35:10,436][121125] Heartbeat connected on Batcher_0
206
+ [2023-08-17 11:35:10,438][121125] Heartbeat connected on LearnerWorker_p0
207
+ [2023-08-17 11:35:10,442][121125] Heartbeat connected on InferenceWorker_p0-w0
208
+ [2023-08-17 11:35:10,444][121125] Heartbeat connected on RolloutWorker_w0
209
+ [2023-08-17 11:35:10,446][121125] Heartbeat connected on RolloutWorker_w1
210
+ [2023-08-17 11:35:10,450][121125] Heartbeat connected on RolloutWorker_w3
211
+ [2023-08-17 11:35:10,453][121125] Heartbeat connected on RolloutWorker_w4
212
+ [2023-08-17 11:35:10,455][121125] Heartbeat connected on RolloutWorker_w5
213
+ [2023-08-17 11:35:10,456][121125] Heartbeat connected on RolloutWorker_w6
214
+ [2023-08-17 11:35:10,459][121125] Heartbeat connected on RolloutWorker_w7
215
+ [2023-08-17 11:35:10,742][121224] Updated weights for policy 0, policy_version 130 (0.0005)
216
+ [2023-08-17 11:35:11,789][121224] Updated weights for policy 0, policy_version 140 (0.0005)
217
+ [2023-08-17 11:35:12,785][121224] Updated weights for policy 0, policy_version 150 (0.0005)
218
+ [2023-08-17 11:35:13,455][121125] Fps is (10 sec: 40550.2, 60 sec: 31948.8, 300 sec: 31948.8). Total num frames: 638976. Throughput: 0: 7468.3. Samples: 149366. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
219
+ [2023-08-17 11:35:13,456][121125] Avg episode reward: [(0, '4.646')]
220
+ [2023-08-17 11:35:13,856][121224] Updated weights for policy 0, policy_version 160 (0.0007)
221
+ [2023-08-17 11:35:14,953][121224] Updated weights for policy 0, policy_version 170 (0.0007)
222
+ [2023-08-17 11:35:15,042][121230] EvtLoop [rollout_proc5_evt_loop, process=rollout_proc5] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance5'), args=(0, 0)
223
+ Traceback (most recent call last):
224
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
225
+ slot_callable(*args)
226
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
227
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
228
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
229
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
230
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
231
+ return self.env.step(action)
232
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
233
+ obs, rew, terminated, truncated, info = self.env.step(action)
234
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
235
+ obs, rew, terminated, truncated, info = self.env.step(action)
236
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
237
+ observation, reward, terminated, truncated, info = self.env.step(action)
238
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
239
+ observation, reward, terminated, truncated, info = self.env.step(action)
240
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
241
+ obs, reward, terminated, truncated, info = self.env.step(action)
242
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
243
+ return self.env.step(action)
244
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
245
+ obs, reward, terminated, truncated, info = self.env.step(action)
246
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
247
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
248
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
249
+ [2023-08-17 11:35:15,042][121229] EvtLoop [rollout_proc4_evt_loop, process=rollout_proc4] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance4'), args=(1, 0)
250
+ Traceback (most recent call last):
251
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
252
+ slot_callable(*args)
253
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
254
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
255
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
256
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
257
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
258
+ return self.env.step(action)
259
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
260
+ obs, rew, terminated, truncated, info = self.env.step(action)
261
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
262
+ obs, rew, terminated, truncated, info = self.env.step(action)
263
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
264
+ observation, reward, terminated, truncated, info = self.env.step(action)
265
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
266
+ observation, reward, terminated, truncated, info = self.env.step(action)
267
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
268
+ obs, reward, terminated, truncated, info = self.env.step(action)
269
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
270
+ return self.env.step(action)
271
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
272
+ obs, reward, terminated, truncated, info = self.env.step(action)
273
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
274
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
275
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
276
+ [2023-08-17 11:35:15,043][121230] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc5_evt_loop
277
+ [2023-08-17 11:35:15,043][121229] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc4_evt_loop
278
+ [2023-08-17 11:35:15,042][121228] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance3'), args=(0, 0)
279
+ Traceback (most recent call last):
280
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
281
+ slot_callable(*args)
282
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
283
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
284
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
285
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
286
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
287
+ return self.env.step(action)
288
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
289
+ obs, rew, terminated, truncated, info = self.env.step(action)
290
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
291
+ obs, rew, terminated, truncated, info = self.env.step(action)
292
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
293
+ observation, reward, terminated, truncated, info = self.env.step(action)
294
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
295
+ observation, reward, terminated, truncated, info = self.env.step(action)
296
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
297
+ obs, reward, terminated, truncated, info = self.env.step(action)
298
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
299
+ return self.env.step(action)
300
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
301
+ obs, reward, terminated, truncated, info = self.env.step(action)
302
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
303
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
304
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
305
+ [2023-08-17 11:35:15,044][121228] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc3_evt_loop
306
+ [2023-08-17 11:35:15,043][121231] EvtLoop [rollout_proc7_evt_loop, process=rollout_proc7] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance7'), args=(0, 0)
307
+ Traceback (most recent call last):
308
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
309
+ slot_callable(*args)
310
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
311
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
312
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
313
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
314
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
315
+ return self.env.step(action)
316
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
317
+ obs, rew, terminated, truncated, info = self.env.step(action)
318
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
319
+ obs, rew, terminated, truncated, info = self.env.step(action)
320
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
321
+ observation, reward, terminated, truncated, info = self.env.step(action)
322
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
323
+ observation, reward, terminated, truncated, info = self.env.step(action)
324
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
325
+ obs, reward, terminated, truncated, info = self.env.step(action)
326
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
327
+ return self.env.step(action)
328
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
329
+ obs, reward, terminated, truncated, info = self.env.step(action)
330
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
331
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
332
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
333
+ [2023-08-17 11:35:15,044][121231] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc7_evt_loop
334
+ [2023-08-17 11:35:15,046][121232] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance6'), args=(0, 0)
335
+ Traceback (most recent call last):
336
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
337
+ slot_callable(*args)
338
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
339
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
340
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
341
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
342
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
343
+ return self.env.step(action)
344
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
345
+ obs, rew, terminated, truncated, info = self.env.step(action)
346
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
347
+ obs, rew, terminated, truncated, info = self.env.step(action)
348
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
349
+ observation, reward, terminated, truncated, info = self.env.step(action)
350
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
351
+ observation, reward, terminated, truncated, info = self.env.step(action)
352
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
353
+ obs, reward, terminated, truncated, info = self.env.step(action)
354
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
355
+ return self.env.step(action)
356
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
357
+ obs, reward, terminated, truncated, info = self.env.step(action)
358
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
359
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
360
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
361
+ [2023-08-17 11:35:15,047][121232] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc6_evt_loop
362
+ [2023-08-17 11:35:15,046][121225] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance1'), args=(1, 0)
363
+ Traceback (most recent call last):
364
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
365
+ slot_callable(*args)
366
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
367
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
368
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
369
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
370
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
371
+ return self.env.step(action)
372
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
373
+ obs, rew, terminated, truncated, info = self.env.step(action)
374
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
375
+ obs, rew, terminated, truncated, info = self.env.step(action)
376
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
377
+ observation, reward, terminated, truncated, info = self.env.step(action)
378
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
379
+ observation, reward, terminated, truncated, info = self.env.step(action)
380
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
381
+ obs, reward, terminated, truncated, info = self.env.step(action)
382
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
383
+ return self.env.step(action)
384
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
385
+ obs, reward, terminated, truncated, info = self.env.step(action)
386
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
387
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
388
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
389
+ [2023-08-17 11:35:15,047][121225] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc1_evt_loop
390
+ [2023-08-17 11:35:15,042][121226] EvtLoop [rollout_proc0_evt_loop, process=rollout_proc0] unhandled exception in slot='advance_rollouts' connected to emitter=Emitter(object_id='InferenceWorker_p0-w0', signal_name='advance0'), args=(0, 0)
391
+ Traceback (most recent call last):
392
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
393
+ slot_callable(*args)
394
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 241, in advance_rollouts
395
+ complete_rollouts, episodic_stats = runner.advance_rollouts(policy_id, self.timing)
396
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 634, in advance_rollouts
397
+ new_obs, rewards, terminated, truncated, infos = e.step(actions)
398
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
399
+ return self.env.step(action)
400
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 129, in step
401
+ obs, rew, terminated, truncated, info = self.env.step(action)
402
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 115, in step
403
+ obs, rew, terminated, truncated, info = self.env.step(action)
404
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 33, in step
405
+ observation, reward, terminated, truncated, info = self.env.step(action)
406
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 469, in step
407
+ observation, reward, terminated, truncated, info = self.env.step(action)
408
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 86, in step
409
+ obs, reward, terminated, truncated, info = self.env.step(action)
410
+ File "/nix/store/b84h28azn9cg3h9940zb3b3x2569sykl-python3-3.10.12-env/lib/python3.10/site-packages/gymnasium/core.py", line 408, in step
411
+ return self.env.step(action)
412
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 54, in step
413
+ obs, reward, terminated, truncated, info = self.env.step(action)
414
+ File "/home/patonw/code/learn/deep-rl-class/.mypy/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 452, in step
415
+ reward = self.game.make_action(actions_flattened, self.skip_frames)
416
+ vizdoom.vizdoom.SignalException: Signal SIGINT received. ViZDoom instance has been closed.
417
+ [2023-08-17 11:35:15,048][121226] Unhandled exception Signal SIGINT received. ViZDoom instance has been closed. in evt loop rollout_proc0_evt_loop
418
+ [2023-08-17 11:35:15,058][121125] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 121125], exiting...
419
+ [2023-08-17 11:35:15,059][121125] Runner profile tree view:
420
+ main_loop: 24.6015
421
+ [2023-08-17 11:35:15,060][121211] Stopping Batcher_0...
422
+ [2023-08-17 11:35:15,060][121211] Loop batcher_evt_loop terminating...
423
+ [2023-08-17 11:35:15,060][121125] Collected {0: 696320}, FPS: 28303.9
424
+ [2023-08-17 11:35:15,061][121211] Saving /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000170_696320.pth...
425
+ [2023-08-17 11:35:15,107][121211] Stopping LearnerWorker_p0...
426
+ [2023-08-17 11:35:15,108][121211] Loop learner_proc0_evt_loop terminating...
427
+ [2023-08-17 11:35:15,121][121224] Weights refcount: 2 0
428
+ [2023-08-17 11:35:15,123][121224] Stopping InferenceWorker_p0-w0...
429
+ [2023-08-17 11:35:15,123][121224] Loop inference_proc0-0_evt_loop terminating...
430
+ [2023-08-17 12:08:48,041][131794] Saving configuration to /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json...
431
+ [2023-08-17 12:08:48,053][131794] Rollout worker 0 uses device cpu
432
+ [2023-08-17 12:08:48,054][131794] Rollout worker 1 uses device cpu
433
+ [2023-08-17 12:08:48,054][131794] Rollout worker 2 uses device cpu
434
+ [2023-08-17 12:08:48,055][131794] Rollout worker 3 uses device cpu
435
+ [2023-08-17 12:08:48,055][131794] Rollout worker 4 uses device cpu
436
+ [2023-08-17 12:08:48,055][131794] Rollout worker 5 uses device cpu
437
+ [2023-08-17 12:08:48,056][131794] Rollout worker 6 uses device cpu
438
+ [2023-08-17 12:08:48,056][131794] Rollout worker 7 uses device cpu
439
+ [2023-08-17 12:08:48,086][131794] Using GPUs [0] for process 0 (actually maps to GPUs [0])
440
+ [2023-08-17 12:08:48,087][131794] InferenceWorker_p0-w0: min num requests: 2
441
+ [2023-08-17 12:08:48,104][131794] Starting all processes...
442
+ [2023-08-17 12:08:48,105][131794] Starting process learner_proc0
443
+ [2023-08-17 12:08:48,154][131794] Starting all processes...
444
+ [2023-08-17 12:08:48,158][131794] Starting process inference_proc0-0
445
+ [2023-08-17 12:08:48,158][131794] Starting process rollout_proc0
446
+ [2023-08-17 12:08:48,158][131794] Starting process rollout_proc1
447
+ [2023-08-17 12:08:48,159][131794] Starting process rollout_proc2
448
+ [2023-08-17 12:08:48,159][131794] Starting process rollout_proc3
449
+ [2023-08-17 12:08:48,160][131794] Starting process rollout_proc4
450
+ [2023-08-17 12:08:48,161][131794] Starting process rollout_proc5
451
+ [2023-08-17 12:08:48,162][131794] Starting process rollout_proc6
452
+ [2023-08-17 12:08:48,162][131794] Starting process rollout_proc7
453
+ [2023-08-17 12:08:49,071][131864] Using GPUs [0] for process 0 (actually maps to GPUs [0])
454
+ [2023-08-17 12:08:49,071][131864] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
455
+ [2023-08-17 12:08:49,082][131864] Num visible devices: 1
456
+ [2023-08-17 12:08:49,101][131864] Starting seed is not provided
457
+ [2023-08-17 12:08:49,102][131864] Using GPUs [0] for process 0 (actually maps to GPUs [0])
458
+ [2023-08-17 12:08:49,102][131864] Initializing actor-critic model on device cuda:0
459
+ [2023-08-17 12:08:49,102][131864] RunningMeanStd input shape: (3, 72, 128)
460
+ [2023-08-17 12:08:49,102][131864] RunningMeanStd input shape: (1,)
461
+ [2023-08-17 12:08:49,111][131864] ConvEncoder: input_channels=3
462
+ [2023-08-17 12:08:49,128][131877] Using GPUs [0] for process 0 (actually maps to GPUs [0])
463
+ [2023-08-17 12:08:49,128][131877] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
464
+ [2023-08-17 12:08:49,131][131877] Num visible devices: 1
465
+ [2023-08-17 12:08:49,176][131864] Conv encoder output size: 512
466
+ [2023-08-17 12:08:49,176][131864] Policy head output size: 512
467
+ [2023-08-17 12:08:49,183][131864] Created Actor Critic model with architecture:
468
+ [2023-08-17 12:08:49,183][131864] ActorCriticSharedWeights(
469
+ (obs_normalizer): ObservationNormalizer(
470
+ (running_mean_std): RunningMeanStdDictInPlace(
471
+ (running_mean_std): ModuleDict(
472
+ (obs): RunningMeanStdInPlace()
473
+ )
474
+ )
475
+ )
476
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
477
+ (encoder): VizdoomEncoder(
478
+ (basic_encoder): ConvEncoder(
479
+ (enc): RecursiveScriptModule(
480
+ original_name=ConvEncoderImpl
481
+ (conv_head): RecursiveScriptModule(
482
+ original_name=Sequential
483
+ (0): RecursiveScriptModule(original_name=Conv2d)
484
+ (1): RecursiveScriptModule(original_name=ELU)
485
+ (2): RecursiveScriptModule(original_name=Conv2d)
486
+ (3): RecursiveScriptModule(original_name=ELU)
487
+ (4): RecursiveScriptModule(original_name=Conv2d)
488
+ (5): RecursiveScriptModule(original_name=ELU)
489
+ )
490
+ (mlp_layers): RecursiveScriptModule(
491
+ original_name=Sequential
492
+ (0): RecursiveScriptModule(original_name=Linear)
493
+ (1): RecursiveScriptModule(original_name=ELU)
494
+ )
495
+ )
496
+ )
497
+ )
498
+ (core): ModelCoreRNN(
499
+ (core): GRU(512, 512)
500
+ )
501
+ (decoder): MlpDecoder(
502
+ (mlp): Identity()
503
+ )
504
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
505
+ (action_parameterization): ActionParameterizationDefault(
506
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
507
+ )
508
+ )
509
+ [2023-08-17 12:08:49,230][131885] Worker 7 uses CPU cores [21, 22, 23]
510
+ [2023-08-17 12:08:49,237][131880] Worker 2 uses CPU cores [6, 7, 8]
511
+ [2023-08-17 12:08:49,239][131884] Worker 6 uses CPU cores [18, 19, 20]
512
+ [2023-08-17 12:08:49,240][131879] Worker 0 uses CPU cores [0, 1, 2]
513
+ [2023-08-17 12:08:49,241][131883] Worker 5 uses CPU cores [15, 16, 17]
514
+ [2023-08-17 12:08:49,242][131881] Worker 3 uses CPU cores [9, 10, 11]
515
+ [2023-08-17 12:08:49,247][131882] Worker 4 uses CPU cores [12, 13, 14]
516
+ [2023-08-17 12:08:49,280][131878] Worker 1 uses CPU cores [3, 4, 5]
517
+ [2023-08-17 12:08:50,303][131864] Using optimizer <class 'torch.optim.adam.Adam'>
518
+ [2023-08-17 12:08:50,303][131864] Loading state from checkpoint /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000170_696320.pth...
519
+ [2023-08-17 12:08:50,319][131864] Loading model from checkpoint
520
+ [2023-08-17 12:08:50,321][131864] Loaded experiment state at self.train_step=170, self.env_steps=696320
521
+ [2023-08-17 12:08:50,322][131864] Initialized policy 0 weights for model version 170
522
+ [2023-08-17 12:08:50,322][131864] LearnerWorker_p0 finished initialization!
523
+ [2023-08-17 12:08:50,323][131864] Using GPUs [0] for process 0 (actually maps to GPUs [0])
524
+ [2023-08-17 12:08:50,883][131877] RunningMeanStd input shape: (3, 72, 128)
525
+ [2023-08-17 12:08:50,883][131877] RunningMeanStd input shape: (1,)
526
+ [2023-08-17 12:08:50,890][131877] ConvEncoder: input_channels=3
527
+ [2023-08-17 12:08:50,941][131877] Conv encoder output size: 512
528
+ [2023-08-17 12:08:50,941][131877] Policy head output size: 512
529
+ [2023-08-17 12:08:51,065][131794] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 696320. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
530
+ [2023-08-17 12:08:51,490][131794] Inference worker 0-0 is ready!
531
+ [2023-08-17 12:08:51,491][131794] All inference workers are ready! Signal rollout workers to start!
532
+ [2023-08-17 12:08:51,506][131880] Doom resolution: 160x120, resize resolution: (128, 72)
533
+ [2023-08-17 12:08:51,506][131884] Doom resolution: 160x120, resize resolution: (128, 72)
534
+ [2023-08-17 12:08:51,506][131881] Doom resolution: 160x120, resize resolution: (128, 72)
535
+ [2023-08-17 12:08:51,506][131885] Doom resolution: 160x120, resize resolution: (128, 72)
536
+ [2023-08-17 12:08:51,508][131879] Doom resolution: 160x120, resize resolution: (128, 72)
537
+ [2023-08-17 12:08:51,508][131878] Doom resolution: 160x120, resize resolution: (128, 72)
538
+ [2023-08-17 12:08:51,508][131882] Doom resolution: 160x120, resize resolution: (128, 72)
539
+ [2023-08-17 12:08:51,508][131883] Doom resolution: 160x120, resize resolution: (128, 72)
540
+ [2023-08-17 12:08:51,714][131885] Decorrelating experience for 0 frames...
541
+ [2023-08-17 12:08:51,715][131883] Decorrelating experience for 0 frames...
542
+ [2023-08-17 12:08:51,715][131882] Decorrelating experience for 0 frames...
543
+ [2023-08-17 12:08:51,720][131881] Decorrelating experience for 0 frames...
544
+ [2023-08-17 12:08:51,735][131884] Decorrelating experience for 0 frames...
545
+ [2023-08-17 12:08:51,743][131880] Decorrelating experience for 0 frames...
546
+ [2023-08-17 12:08:51,900][131882] Decorrelating experience for 32 frames...
547
+ [2023-08-17 12:08:51,906][131885] Decorrelating experience for 32 frames...
548
+ [2023-08-17 12:08:51,906][131881] Decorrelating experience for 32 frames...
549
+ [2023-08-17 12:08:51,910][131878] Decorrelating experience for 0 frames...
550
+ [2023-08-17 12:08:51,920][131884] Decorrelating experience for 32 frames...
551
+ [2023-08-17 12:08:51,931][131880] Decorrelating experience for 32 frames...
552
+ [2023-08-17 12:08:51,956][131883] Decorrelating experience for 32 frames...
553
+ [2023-08-17 12:08:52,104][131878] Decorrelating experience for 32 frames...
554
+ [2023-08-17 12:08:52,108][131882] Decorrelating experience for 64 frames...
555
+ [2023-08-17 12:08:52,116][131879] Decorrelating experience for 0 frames...
556
+ [2023-08-17 12:08:52,124][131881] Decorrelating experience for 64 frames...
557
+ [2023-08-17 12:08:52,131][131884] Decorrelating experience for 64 frames...
558
+ [2023-08-17 12:08:52,182][131880] Decorrelating experience for 64 frames...
559
+ [2023-08-17 12:08:52,299][131878] Decorrelating experience for 64 frames...
560
+ [2023-08-17 12:08:52,301][131879] Decorrelating experience for 32 frames...
561
+ [2023-08-17 12:08:52,315][131885] Decorrelating experience for 64 frames...
562
+ [2023-08-17 12:08:52,441][131882] Decorrelating experience for 96 frames...
563
+ [2023-08-17 12:08:52,485][131884] Decorrelating experience for 96 frames...
564
+ [2023-08-17 12:08:52,502][131878] Decorrelating experience for 96 frames...
565
+ [2023-08-17 12:08:52,530][131879] Decorrelating experience for 64 frames...
566
+ [2023-08-17 12:08:52,680][131881] Decorrelating experience for 96 frames...
567
+ [2023-08-17 12:08:52,728][131883] Decorrelating experience for 64 frames...
568
+ [2023-08-17 12:08:52,732][131885] Decorrelating experience for 96 frames...
569
+ [2023-08-17 12:08:52,869][131879] Decorrelating experience for 96 frames...
570
+ [2023-08-17 12:08:52,919][131883] Decorrelating experience for 96 frames...
571
+ [2023-08-17 12:08:52,923][131880] Decorrelating experience for 96 frames...
572
+ [2023-08-17 12:08:53,218][131864] Signal inference workers to stop experience collection...
573
+ [2023-08-17 12:08:53,246][131877] InferenceWorker_p0-w0: stopping experience collection
574
+ [2023-08-17 12:08:54,097][131864] Signal inference workers to resume experience collection...
575
+ [2023-08-17 12:08:54,097][131877] InferenceWorker_p0-w0: resuming experience collection
576
+ [2023-08-17 12:08:55,323][131877] Updated weights for policy 0, policy_version 180 (0.0180)
577
+ [2023-08-17 12:08:56,065][131794] Fps is (10 sec: 13926.5, 60 sec: 13926.5, 300 sec: 13926.5). Total num frames: 765952. Throughput: 0: 662.8. Samples: 3314. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
578
+ [2023-08-17 12:08:56,066][131794] Avg episode reward: [(0, '4.760')]
579
+ [2023-08-17 12:08:56,070][131864] Saving new best policy, reward=4.760!
580
+ [2023-08-17 12:08:56,305][131877] Updated weights for policy 0, policy_version 190 (0.0006)
581
+ [2023-08-17 12:08:57,286][131877] Updated weights for policy 0, policy_version 200 (0.0006)
582
+ [2023-08-17 12:08:58,252][131877] Updated weights for policy 0, policy_version 210 (0.0007)
583
+ [2023-08-17 12:08:59,223][131877] Updated weights for policy 0, policy_version 220 (0.0006)
584
+ [2023-08-17 12:09:00,213][131877] Updated weights for policy 0, policy_version 230 (0.0006)
585
+ [2023-08-17 12:09:01,065][131794] Fps is (10 sec: 27853.0, 60 sec: 27853.0, 300 sec: 27853.0). Total num frames: 974848. Throughput: 0: 6506.0. Samples: 65060. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
586
+ [2023-08-17 12:09:01,067][131794] Avg episode reward: [(0, '4.894')]
587
+ [2023-08-17 12:09:01,068][131864] Saving new best policy, reward=4.894!
588
+ [2023-08-17 12:09:01,199][131877] Updated weights for policy 0, policy_version 240 (0.0006)
589
+ [2023-08-17 12:09:02,167][131877] Updated weights for policy 0, policy_version 250 (0.0006)
590
+ [2023-08-17 12:09:03,131][131877] Updated weights for policy 0, policy_version 260 (0.0006)
591
+ [2023-08-17 12:09:04,168][131877] Updated weights for policy 0, policy_version 270 (0.0007)
592
+ [2023-08-17 12:09:05,171][131877] Updated weights for policy 0, policy_version 280 (0.0007)
593
+ [2023-08-17 12:09:06,065][131794] Fps is (10 sec: 41779.5, 60 sec: 32495.2, 300 sec: 32495.2). Total num frames: 1183744. Throughput: 0: 6420.3. Samples: 96304. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
594
+ [2023-08-17 12:09:06,066][131794] Avg episode reward: [(0, '5.072')]
595
+ [2023-08-17 12:09:06,069][131864] Saving new best policy, reward=5.072!
596
+ [2023-08-17 12:09:06,158][131877] Updated weights for policy 0, policy_version 290 (0.0007)
597
+ [2023-08-17 12:09:07,207][131877] Updated weights for policy 0, policy_version 300 (0.0006)
598
+ [2023-08-17 12:09:08,081][131794] Heartbeat connected on Batcher_0
599
+ [2023-08-17 12:09:08,084][131794] Heartbeat connected on LearnerWorker_p0
600
+ [2023-08-17 12:09:08,089][131794] Heartbeat connected on InferenceWorker_p0-w0
601
+ [2023-08-17 12:09:08,090][131794] Heartbeat connected on RolloutWorker_w0
602
+ [2023-08-17 12:09:08,093][131794] Heartbeat connected on RolloutWorker_w1
603
+ [2023-08-17 12:09:08,094][131794] Heartbeat connected on RolloutWorker_w2
604
+ [2023-08-17 12:09:08,097][131794] Heartbeat connected on RolloutWorker_w3
605
+ [2023-08-17 12:09:08,098][131794] Heartbeat connected on RolloutWorker_w4
606
+ [2023-08-17 12:09:08,102][131794] Heartbeat connected on RolloutWorker_w5
607
+ [2023-08-17 12:09:08,102][131794] Heartbeat connected on RolloutWorker_w6
608
+ [2023-08-17 12:09:08,105][131794] Heartbeat connected on RolloutWorker_w7
609
+ [2023-08-17 12:09:08,269][131877] Updated weights for policy 0, policy_version 310 (0.0007)
610
+ [2023-08-17 12:09:09,317][131877] Updated weights for policy 0, policy_version 320 (0.0007)
611
+ [2023-08-17 12:09:10,353][131877] Updated weights for policy 0, policy_version 330 (0.0006)
612
+ [2023-08-17 12:09:11,065][131794] Fps is (10 sec: 40140.7, 60 sec: 33996.9, 300 sec: 33996.9). Total num frames: 1376256. Throughput: 0: 7819.2. Samples: 156384. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
613
+ [2023-08-17 12:09:11,066][131794] Avg episode reward: [(0, '5.895')]
614
+ [2023-08-17 12:09:11,067][131864] Saving new best policy, reward=5.895!
615
+ [2023-08-17 12:09:11,382][131877] Updated weights for policy 0, policy_version 340 (0.0006)
616
+ [2023-08-17 12:09:12,356][131877] Updated weights for policy 0, policy_version 350 (0.0007)
617
+ [2023-08-17 12:09:13,358][131877] Updated weights for policy 0, policy_version 360 (0.0006)
618
+ [2023-08-17 12:09:14,367][131877] Updated weights for policy 0, policy_version 370 (0.0006)
619
+ [2023-08-17 12:09:15,414][131877] Updated weights for policy 0, policy_version 380 (0.0006)
620
+ [2023-08-17 12:09:16,065][131794] Fps is (10 sec: 39731.1, 60 sec: 35389.6, 300 sec: 35389.6). Total num frames: 1581056. Throughput: 0: 8668.8. Samples: 216718. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
621
+ [2023-08-17 12:09:16,066][131794] Avg episode reward: [(0, '5.889')]
622
+ [2023-08-17 12:09:16,442][131877] Updated weights for policy 0, policy_version 390 (0.0006)
623
+ [2023-08-17 12:09:17,456][131877] Updated weights for policy 0, policy_version 400 (0.0006)
624
+ [2023-08-17 12:09:18,507][131877] Updated weights for policy 0, policy_version 410 (0.0006)
625
+ [2023-08-17 12:09:19,530][131877] Updated weights for policy 0, policy_version 420 (0.0007)
626
+ [2023-08-17 12:09:20,560][131877] Updated weights for policy 0, policy_version 430 (0.0007)
627
+ [2023-08-17 12:09:21,065][131794] Fps is (10 sec: 40550.8, 60 sec: 36181.5, 300 sec: 36181.5). Total num frames: 1781760. Throughput: 0: 8212.2. Samples: 246364. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
628
+ [2023-08-17 12:09:21,066][131794] Avg episode reward: [(0, '6.038')]
629
+ [2023-08-17 12:09:21,066][131864] Saving new best policy, reward=6.038!
630
+ [2023-08-17 12:09:21,554][131877] Updated weights for policy 0, policy_version 440 (0.0006)
631
+ [2023-08-17 12:09:22,574][131877] Updated weights for policy 0, policy_version 450 (0.0007)
632
+ [2023-08-17 12:09:23,579][131877] Updated weights for policy 0, policy_version 460 (0.0006)
633
+ [2023-08-17 12:09:24,534][131877] Updated weights for policy 0, policy_version 470 (0.0006)
634
+ [2023-08-17 12:09:25,469][131877] Updated weights for policy 0, policy_version 480 (0.0006)
635
+ [2023-08-17 12:09:26,065][131794] Fps is (10 sec: 40960.0, 60 sec: 36981.1, 300 sec: 36981.1). Total num frames: 1990656. Throughput: 0: 8786.5. Samples: 307528. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
636
+ [2023-08-17 12:09:26,066][131794] Avg episode reward: [(0, '8.814')]
637
+ [2023-08-17 12:09:26,068][131864] Saving new best policy, reward=8.814!
638
+ [2023-08-17 12:09:26,467][131877] Updated weights for policy 0, policy_version 490 (0.0007)
639
+ [2023-08-17 12:09:27,472][131877] Updated weights for policy 0, policy_version 500 (0.0007)
640
+ [2023-08-17 12:09:28,481][131877] Updated weights for policy 0, policy_version 510 (0.0006)
641
+ [2023-08-17 12:09:29,497][131877] Updated weights for policy 0, policy_version 520 (0.0006)
642
+ [2023-08-17 12:09:30,455][131877] Updated weights for policy 0, policy_version 530 (0.0007)
643
+ [2023-08-17 12:09:31,065][131794] Fps is (10 sec: 40959.8, 60 sec: 37376.1, 300 sec: 37376.1). Total num frames: 2191360. Throughput: 0: 9247.0. Samples: 369878. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
644
+ [2023-08-17 12:09:31,066][131794] Avg episode reward: [(0, '10.505')]
645
+ [2023-08-17 12:09:31,067][131864] Saving new best policy, reward=10.505!
646
+ [2023-08-17 12:09:31,504][131877] Updated weights for policy 0, policy_version 540 (0.0006)
647
+ [2023-08-17 12:09:32,471][131877] Updated weights for policy 0, policy_version 550 (0.0006)
648
+ [2023-08-17 12:09:33,439][131877] Updated weights for policy 0, policy_version 560 (0.0006)
649
+ [2023-08-17 12:09:34,495][131877] Updated weights for policy 0, policy_version 570 (0.0007)
650
+ [2023-08-17 12:09:35,483][131877] Updated weights for policy 0, policy_version 580 (0.0006)
651
+ [2023-08-17 12:09:36,065][131794] Fps is (10 sec: 40550.4, 60 sec: 37774.3, 300 sec: 37774.3). Total num frames: 2396160. Throughput: 0: 8903.2. Samples: 400642. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
652
+ [2023-08-17 12:09:36,066][131794] Avg episode reward: [(0, '13.981')]
653
+ [2023-08-17 12:09:36,069][131864] Saving new best policy, reward=13.981!
654
+ [2023-08-17 12:09:36,506][131877] Updated weights for policy 0, policy_version 590 (0.0007)
655
+ [2023-08-17 12:09:37,541][131877] Updated weights for policy 0, policy_version 600 (0.0006)
656
+ [2023-08-17 12:09:38,535][131877] Updated weights for policy 0, policy_version 610 (0.0007)
657
+ [2023-08-17 12:09:39,574][131877] Updated weights for policy 0, policy_version 620 (0.0006)
658
+ [2023-08-17 12:09:40,629][131877] Updated weights for policy 0, policy_version 630 (0.0007)
659
+ [2023-08-17 12:09:41,065][131794] Fps is (10 sec: 40550.4, 60 sec: 38010.9, 300 sec: 38010.9). Total num frames: 2596864. Throughput: 0: 10165.2. Samples: 460746. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
660
+ [2023-08-17 12:09:41,066][131794] Avg episode reward: [(0, '16.720')]
661
+ [2023-08-17 12:09:41,067][131864] Saving new best policy, reward=16.720!
662
+ [2023-08-17 12:09:41,662][131877] Updated weights for policy 0, policy_version 640 (0.0006)
663
+ [2023-08-17 12:09:42,705][131877] Updated weights for policy 0, policy_version 650 (0.0007)
664
+ [2023-08-17 12:09:43,682][131877] Updated weights for policy 0, policy_version 660 (0.0006)
665
+ [2023-08-17 12:09:44,707][131877] Updated weights for policy 0, policy_version 670 (0.0007)
666
+ [2023-08-17 12:09:45,654][131877] Updated weights for policy 0, policy_version 680 (0.0006)
667
+ [2023-08-17 12:09:46,065][131794] Fps is (10 sec: 40550.4, 60 sec: 38279.1, 300 sec: 38279.1). Total num frames: 2801664. Throughput: 0: 10135.5. Samples: 521158. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
668
+ [2023-08-17 12:09:46,066][131794] Avg episode reward: [(0, '15.224')]
669
+ [2023-08-17 12:09:46,644][131877] Updated weights for policy 0, policy_version 690 (0.0006)
670
+ [2023-08-17 12:09:47,596][131877] Updated weights for policy 0, policy_version 700 (0.0006)
671
+ [2023-08-17 12:09:48,566][131877] Updated weights for policy 0, policy_version 710 (0.0006)
672
+ [2023-08-17 12:09:49,544][131877] Updated weights for policy 0, policy_version 720 (0.0006)
673
+ [2023-08-17 12:09:50,566][131877] Updated weights for policy 0, policy_version 730 (0.0007)
674
+ [2023-08-17 12:09:51,065][131794] Fps is (10 sec: 41369.5, 60 sec: 38570.7, 300 sec: 38570.7). Total num frames: 3010560. Throughput: 0: 10141.9. Samples: 552690. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
675
+ [2023-08-17 12:09:51,066][131794] Avg episode reward: [(0, '16.889')]
676
+ [2023-08-17 12:09:51,067][131864] Saving new best policy, reward=16.889!
677
+ [2023-08-17 12:09:51,497][131877] Updated weights for policy 0, policy_version 740 (0.0006)
678
+ [2023-08-17 12:09:52,458][131877] Updated weights for policy 0, policy_version 750 (0.0006)
679
+ [2023-08-17 12:09:53,420][131877] Updated weights for policy 0, policy_version 760 (0.0006)
680
+ [2023-08-17 12:09:54,449][131877] Updated weights for policy 0, policy_version 770 (0.0007)
681
+ [2023-08-17 12:09:55,425][131877] Updated weights for policy 0, policy_version 780 (0.0007)
682
+ [2023-08-17 12:09:56,065][131794] Fps is (10 sec: 41779.2, 60 sec: 40891.8, 300 sec: 38817.5). Total num frames: 3219456. Throughput: 0: 10201.7. Samples: 615458. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
683
+ [2023-08-17 12:09:56,066][131794] Avg episode reward: [(0, '18.774')]
684
+ [2023-08-17 12:09:56,069][131864] Saving new best policy, reward=18.774!
685
+ [2023-08-17 12:09:56,434][131877] Updated weights for policy 0, policy_version 790 (0.0006)
686
+ [2023-08-17 12:09:57,381][131877] Updated weights for policy 0, policy_version 800 (0.0007)
687
+ [2023-08-17 12:09:58,323][131877] Updated weights for policy 0, policy_version 810 (0.0006)
688
+ [2023-08-17 12:09:59,287][131877] Updated weights for policy 0, policy_version 820 (0.0006)
689
+ [2023-08-17 12:10:00,214][131877] Updated weights for policy 0, policy_version 830 (0.0006)
690
+ [2023-08-17 12:10:01,065][131794] Fps is (10 sec: 42188.9, 60 sec: 40960.0, 300 sec: 39087.6). Total num frames: 3432448. Throughput: 0: 10286.3. Samples: 679604. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
691
+ [2023-08-17 12:10:01,066][131794] Avg episode reward: [(0, '21.885')]
692
+ [2023-08-17 12:10:01,067][131864] Saving new best policy, reward=21.885!
693
+ [2023-08-17 12:10:01,201][131877] Updated weights for policy 0, policy_version 840 (0.0006)
694
+ [2023-08-17 12:10:02,187][131877] Updated weights for policy 0, policy_version 850 (0.0006)
695
+ [2023-08-17 12:10:03,190][131877] Updated weights for policy 0, policy_version 860 (0.0007)
696
+ [2023-08-17 12:10:04,150][131877] Updated weights for policy 0, policy_version 870 (0.0006)
697
+ [2023-08-17 12:10:05,158][131877] Updated weights for policy 0, policy_version 880 (0.0006)
698
+ [2023-08-17 12:10:06,065][131794] Fps is (10 sec: 41779.0, 60 sec: 40891.7, 300 sec: 39212.4). Total num frames: 3637248. Throughput: 0: 10318.1. Samples: 710680. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
699
+ [2023-08-17 12:10:06,066][131794] Avg episode reward: [(0, '19.364')]
700
+ [2023-08-17 12:10:06,176][131877] Updated weights for policy 0, policy_version 890 (0.0007)
701
+ [2023-08-17 12:10:07,147][131877] Updated weights for policy 0, policy_version 900 (0.0006)
702
+ [2023-08-17 12:10:08,101][131877] Updated weights for policy 0, policy_version 910 (0.0007)
703
+ [2023-08-17 12:10:09,146][131877] Updated weights for policy 0, policy_version 920 (0.0007)
704
+ [2023-08-17 12:10:10,146][131877] Updated weights for policy 0, policy_version 930 (0.0006)
705
+ [2023-08-17 12:10:11,065][131794] Fps is (10 sec: 41369.6, 60 sec: 41164.8, 300 sec: 39372.8). Total num frames: 3846144. Throughput: 0: 10327.7. Samples: 772274. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
706
+ [2023-08-17 12:10:11,066][131794] Avg episode reward: [(0, '19.007')]
707
+ [2023-08-17 12:10:11,109][131877] Updated weights for policy 0, policy_version 940 (0.0006)
708
+ [2023-08-17 12:10:12,081][131877] Updated weights for policy 0, policy_version 950 (0.0007)
709
+ [2023-08-17 12:10:13,110][131877] Updated weights for policy 0, policy_version 960 (0.0007)
710
+ [2023-08-17 12:10:14,089][131877] Updated weights for policy 0, policy_version 970 (0.0006)
711
+ [2023-08-17 12:10:14,877][131864] Saving /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
712
+ [2023-08-17 12:10:14,877][131794] Component Batcher_0 stopped!
713
+ [2023-08-17 12:10:14,877][131864] Stopping Batcher_0...
714
+ [2023-08-17 12:10:14,889][131864] Loop batcher_evt_loop terminating...
715
+ [2023-08-17 12:10:14,890][131877] Weights refcount: 2 0
716
+ [2023-08-17 12:10:14,891][131877] Stopping InferenceWorker_p0-w0...
717
+ [2023-08-17 12:10:14,891][131877] Loop inference_proc0-0_evt_loop terminating...
718
+ [2023-08-17 12:10:14,891][131794] Component InferenceWorker_p0-w0 stopped!
719
+ [2023-08-17 12:10:14,910][131864] Saving /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
720
+ [2023-08-17 12:10:14,930][131881] Stopping RolloutWorker_w3...
721
+ [2023-08-17 12:10:14,930][131881] Loop rollout_proc3_evt_loop terminating...
722
+ [2023-08-17 12:10:14,930][131794] Component RolloutWorker_w3 stopped!
723
+ [2023-08-17 12:10:14,935][131882] Stopping RolloutWorker_w4...
724
+ [2023-08-17 12:10:14,935][131878] Stopping RolloutWorker_w1...
725
+ [2023-08-17 12:10:14,935][131878] Loop rollout_proc1_evt_loop terminating...
726
+ [2023-08-17 12:10:14,935][131882] Loop rollout_proc4_evt_loop terminating...
727
+ [2023-08-17 12:10:14,935][131794] Component RolloutWorker_w4 stopped!
728
+ [2023-08-17 12:10:14,936][131884] Stopping RolloutWorker_w6...
729
+ [2023-08-17 12:10:14,936][131794] Component RolloutWorker_w1 stopped!
730
+ [2023-08-17 12:10:14,936][131884] Loop rollout_proc6_evt_loop terminating...
731
+ [2023-08-17 12:10:14,936][131794] Component RolloutWorker_w6 stopped!
732
+ [2023-08-17 12:10:14,938][131879] Stopping RolloutWorker_w0...
733
+ [2023-08-17 12:10:14,938][131879] Loop rollout_proc0_evt_loop terminating...
734
+ [2023-08-17 12:10:14,938][131794] Component RolloutWorker_w0 stopped!
735
+ [2023-08-17 12:10:14,940][131883] Stopping RolloutWorker_w5...
736
+ [2023-08-17 12:10:14,940][131794] Component RolloutWorker_w5 stopped!
737
+ [2023-08-17 12:10:14,940][131883] Loop rollout_proc5_evt_loop terminating...
738
+ [2023-08-17 12:10:14,940][131885] Stopping RolloutWorker_w7...
739
+ [2023-08-17 12:10:14,940][131885] Loop rollout_proc7_evt_loop terminating...
740
+ [2023-08-17 12:10:14,940][131794] Component RolloutWorker_w7 stopped!
741
+ [2023-08-17 12:10:14,963][131880] Stopping RolloutWorker_w2...
742
+ [2023-08-17 12:10:14,963][131880] Loop rollout_proc2_evt_loop terminating...
743
+ [2023-08-17 12:10:14,963][131794] Component RolloutWorker_w2 stopped!
744
+ [2023-08-17 12:10:14,973][131864] Stopping LearnerWorker_p0...
745
+ [2023-08-17 12:10:14,974][131864] Loop learner_proc0_evt_loop terminating...
746
+ [2023-08-17 12:10:14,974][131794] Component LearnerWorker_p0 stopped!
747
+ [2023-08-17 12:10:14,975][131794] Waiting for process learner_proc0 to stop...
748
+ [2023-08-17 12:10:15,620][131794] Waiting for process inference_proc0-0 to join...
749
+ [2023-08-17 12:10:15,620][131794] Waiting for process rollout_proc0 to join...
750
+ [2023-08-17 12:10:15,629][131794] Waiting for process rollout_proc1 to join...
751
+ [2023-08-17 12:10:15,630][131794] Waiting for process rollout_proc2 to join...
752
+ [2023-08-17 12:10:15,630][131794] Waiting for process rollout_proc3 to join...
753
+ [2023-08-17 12:10:15,631][131794] Waiting for process rollout_proc4 to join...
754
+ [2023-08-17 12:10:15,632][131794] Waiting for process rollout_proc5 to join...
755
+ [2023-08-17 12:10:15,632][131794] Waiting for process rollout_proc6 to join...
756
+ [2023-08-17 12:10:15,633][131794] Waiting for process rollout_proc7 to join...
757
+ [2023-08-17 12:10:15,633][131794] Batcher 0 profile tree view:
758
+ batching: 6.7047, releasing_batches: 0.0087
759
+ [2023-08-17 12:10:15,634][131794] InferenceWorker_p0-w0 profile tree view:
760
+ wait_policy: 0.0000
761
+ wait_policy_total: 2.0680
762
+ update_model: 1.3116
763
+ weight_update: 0.0007
764
+ one_step: 0.0012
765
+ handle_policy_step: 74.7597
766
+ deserialize: 3.1557, stack: 0.3403, obs_to_device_normalize: 17.0704, forward: 37.2802, send_messages: 4.8157
767
+ prepare_outputs: 8.7975
768
+ to_cpu: 5.6577
769
+ [2023-08-17 12:10:15,634][131794] Learner 0 profile tree view:
770
+ misc: 0.0028, prepare_batch: 4.0784
771
+ train: 9.7538
772
+ epoch_init: 0.0026, minibatch_init: 0.0026, losses_postprocess: 0.2418, kl_divergence: 0.1909, after_optimizer: 0.2499
773
+ calculate_losses: 3.4695
774
+ losses_init: 0.0014, forward_head: 0.2537, bptt_initial: 2.0322, tail: 0.2342, advantages_returns: 0.0568, losses: 0.4473
775
+ bptt: 0.3786
776
+ bptt_forward_core: 0.3600
777
+ update: 5.4474
778
+ clip: 2.7340
779
+ [2023-08-17 12:10:15,635][131794] RolloutWorker_w0 profile tree view:
780
+ wait_for_trajectories: 0.0615, enqueue_policy_requests: 2.6644, env_step: 37.2031, overhead: 3.5782, complete_rollouts: 0.0881
781
+ save_policy_outputs: 3.6697
782
+ split_output_tensors: 1.7077
783
+ [2023-08-17 12:10:15,635][131794] RolloutWorker_w7 profile tree view:
784
+ wait_for_trajectories: 0.0601, enqueue_policy_requests: 2.6081, env_step: 35.6438, overhead: 3.4090, complete_rollouts: 0.0854
785
+ save_policy_outputs: 3.4689
786
+ split_output_tensors: 1.6294
787
+ [2023-08-17 12:10:15,636][131794] Loop Runner_EvtLoop terminating...
788
+ [2023-08-17 12:10:15,637][131794] Runner profile tree view:
789
+ main_loop: 87.5323
790
+ [2023-08-17 12:10:15,637][131794] Collected {0: 4005888}, FPS: 37809.7
791
+ [2023-08-17 12:11:06,264][131794] Loading existing experiment configuration from /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json
792
+ [2023-08-17 12:11:06,264][131794] Overriding arg 'num_workers' with value 1 passed from command line
793
+ [2023-08-17 12:11:06,265][131794] Adding new argument 'no_render'=True that is not in the saved config file!
794
+ [2023-08-17 12:11:06,265][131794] Adding new argument 'save_video'=True that is not in the saved config file!
795
+ [2023-08-17 12:11:06,265][131794] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
796
+ [2023-08-17 12:11:06,266][131794] Adding new argument 'video_name'=None that is not in the saved config file!
797
+ [2023-08-17 12:11:06,266][131794] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
798
+ [2023-08-17 12:11:06,266][131794] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
799
+ [2023-08-17 12:11:06,266][131794] Adding new argument 'push_to_hub'=False that is not in the saved config file!
800
+ [2023-08-17 12:11:06,267][131794] Adding new argument 'hf_repository'=None that is not in the saved config file!
801
+ [2023-08-17 12:11:06,267][131794] Adding new argument 'policy_index'=0 that is not in the saved config file!
802
+ [2023-08-17 12:11:06,267][131794] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
803
+ [2023-08-17 12:11:06,268][131794] Adding new argument 'train_script'=None that is not in the saved config file!
804
+ [2023-08-17 12:11:06,268][131794] Adding new argument 'enjoy_script'=None that is not in the saved config file!
805
+ [2023-08-17 12:11:06,268][131794] Using frameskip 1 and render_action_repeat=4 for evaluation
806
+ [2023-08-17 12:11:06,274][131794] Doom resolution: 160x120, resize resolution: (128, 72)
807
+ [2023-08-17 12:11:06,275][131794] RunningMeanStd input shape: (3, 72, 128)
808
+ [2023-08-17 12:11:06,275][131794] RunningMeanStd input shape: (1,)
809
+ [2023-08-17 12:11:06,283][131794] ConvEncoder: input_channels=3
810
+ [2023-08-17 12:11:06,348][131794] Conv encoder output size: 512
811
+ [2023-08-17 12:11:06,349][131794] Policy head output size: 512
812
+ [2023-08-17 12:11:07,473][131794] Loading state from checkpoint /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
813
+ [2023-08-17 12:11:08,166][131794] Num frames 100...
814
+ [2023-08-17 12:11:08,225][131794] Num frames 200...
815
+ [2023-08-17 12:11:08,283][131794] Num frames 300...
816
+ [2023-08-17 12:11:08,341][131794] Num frames 400...
817
+ [2023-08-17 12:11:08,400][131794] Num frames 500...
818
+ [2023-08-17 12:11:08,457][131794] Num frames 600...
819
+ [2023-08-17 12:11:08,516][131794] Num frames 700...
820
+ [2023-08-17 12:11:08,574][131794] Num frames 800...
821
+ [2023-08-17 12:11:08,632][131794] Num frames 900...
822
+ [2023-08-17 12:11:08,694][131794] Num frames 1000...
823
+ [2023-08-17 12:11:08,753][131794] Num frames 1100...
824
+ [2023-08-17 12:11:08,811][131794] Num frames 1200...
825
+ [2023-08-17 12:11:08,869][131794] Num frames 1300...
826
+ [2023-08-17 12:11:08,928][131794] Num frames 1400...
827
+ [2023-08-17 12:11:09,003][131794] Avg episode rewards: #0: 31.400, true rewards: #0: 14.400
828
+ [2023-08-17 12:11:09,004][131794] Avg episode reward: 31.400, avg true_objective: 14.400
829
+ [2023-08-17 12:11:09,040][131794] Num frames 1500...
830
+ [2023-08-17 12:11:09,097][131794] Num frames 1600...
831
+ [2023-08-17 12:11:09,154][131794] Num frames 1700...
832
+ [2023-08-17 12:11:09,212][131794] Num frames 1800...
833
+ [2023-08-17 12:11:09,297][131794] Avg episode rewards: #0: 18.780, true rewards: #0: 9.280
834
+ [2023-08-17 12:11:09,298][131794] Avg episode reward: 18.780, avg true_objective: 9.280
835
+ [2023-08-17 12:11:09,323][131794] Num frames 1900...
836
+ [2023-08-17 12:11:09,382][131794] Num frames 2000...
837
+ [2023-08-17 12:11:09,439][131794] Num frames 2100...
838
+ [2023-08-17 12:11:09,498][131794] Num frames 2200...
839
+ [2023-08-17 12:11:09,574][131794] Avg episode rewards: #0: 14.467, true rewards: #0: 7.467
840
+ [2023-08-17 12:11:09,574][131794] Avg episode reward: 14.467, avg true_objective: 7.467
841
+ [2023-08-17 12:11:09,610][131794] Num frames 2300...
842
+ [2023-08-17 12:11:09,670][131794] Num frames 2400...
843
+ [2023-08-17 12:11:09,729][131794] Num frames 2500...
844
+ [2023-08-17 12:11:09,789][131794] Num frames 2600...
845
+ [2023-08-17 12:11:09,847][131794] Num frames 2700...
846
+ [2023-08-17 12:11:09,906][131794] Num frames 2800...
847
+ [2023-08-17 12:11:09,963][131794] Num frames 2900...
848
+ [2023-08-17 12:11:10,021][131794] Num frames 3000...
849
+ [2023-08-17 12:11:10,079][131794] Num frames 3100...
850
+ [2023-08-17 12:11:10,138][131794] Num frames 3200...
851
+ [2023-08-17 12:11:10,200][131794] Num frames 3300...
852
+ [2023-08-17 12:11:10,259][131794] Num frames 3400...
853
+ [2023-08-17 12:11:10,317][131794] Num frames 3500...
854
+ [2023-08-17 12:11:10,375][131794] Num frames 3600...
855
+ [2023-08-17 12:11:10,433][131794] Num frames 3700...
856
+ [2023-08-17 12:11:10,492][131794] Num frames 3800...
857
+ [2023-08-17 12:11:10,550][131794] Num frames 3900...
858
+ [2023-08-17 12:11:10,610][131794] Num frames 4000...
859
+ [2023-08-17 12:11:10,668][131794] Num frames 4100...
860
+ [2023-08-17 12:11:10,727][131794] Num frames 4200...
861
+ [2023-08-17 12:11:10,794][131794] Avg episode rewards: #0: 22.560, true rewards: #0: 10.560
862
+ [2023-08-17 12:11:10,794][131794] Avg episode reward: 22.560, avg true_objective: 10.560
863
+ [2023-08-17 12:11:10,840][131794] Num frames 4300...
864
+ [2023-08-17 12:11:10,898][131794] Num frames 4400...
865
+ [2023-08-17 12:11:10,959][131794] Num frames 4500...
866
+ [2023-08-17 12:11:11,017][131794] Num frames 4600...
867
+ [2023-08-17 12:11:11,076][131794] Num frames 4700...
868
+ [2023-08-17 12:11:11,134][131794] Num frames 4800...
869
+ [2023-08-17 12:11:11,242][131794] Avg episode rewards: #0: 20.392, true rewards: #0: 9.792
870
+ [2023-08-17 12:11:11,243][131794] Avg episode reward: 20.392, avg true_objective: 9.792
871
+ [2023-08-17 12:11:11,246][131794] Num frames 4900...
872
+ [2023-08-17 12:11:11,303][131794] Num frames 5000...
873
+ [2023-08-17 12:11:11,363][131794] Num frames 5100...
874
+ [2023-08-17 12:11:11,421][131794] Num frames 5200...
875
+ [2023-08-17 12:11:11,479][131794] Num frames 5300...
876
+ [2023-08-17 12:11:11,537][131794] Num frames 5400...
877
+ [2023-08-17 12:11:11,594][131794] Num frames 5500...
878
+ [2023-08-17 12:11:11,651][131794] Num frames 5600...
879
+ [2023-08-17 12:11:11,709][131794] Num frames 5700...
880
+ [2023-08-17 12:11:11,799][131794] Avg episode rewards: #0: 19.933, true rewards: #0: 9.600
881
+ [2023-08-17 12:11:11,799][131794] Avg episode reward: 19.933, avg true_objective: 9.600
882
+ [2023-08-17 12:11:11,823][131794] Num frames 5800...
883
+ [2023-08-17 12:11:11,881][131794] Num frames 5900...
884
+ [2023-08-17 12:11:11,940][131794] Num frames 6000...
885
+ [2023-08-17 12:11:11,998][131794] Num frames 6100...
886
+ [2023-08-17 12:11:12,056][131794] Num frames 6200...
887
+ [2023-08-17 12:11:12,113][131794] Num frames 6300...
888
+ [2023-08-17 12:11:12,170][131794] Num frames 6400...
889
+ [2023-08-17 12:11:12,260][131794] Avg episode rewards: #0: 19.234, true rewards: #0: 9.234
890
+ [2023-08-17 12:11:12,260][131794] Avg episode reward: 19.234, avg true_objective: 9.234
891
+ [2023-08-17 12:11:12,282][131794] Num frames 6500...
892
+ [2023-08-17 12:11:12,340][131794] Num frames 6600...
893
+ [2023-08-17 12:11:12,398][131794] Num frames 6700...
894
+ [2023-08-17 12:11:12,455][131794] Num frames 6800...
895
+ [2023-08-17 12:11:12,513][131794] Num frames 6900...
896
+ [2023-08-17 12:11:12,609][131794] Avg episode rewards: #0: 17.720, true rewards: #0: 8.720
897
+ [2023-08-17 12:11:12,609][131794] Avg episode reward: 17.720, avg true_objective: 8.720
898
+ [2023-08-17 12:11:12,624][131794] Num frames 7000...
899
+ [2023-08-17 12:11:12,683][131794] Num frames 7100...
900
+ [2023-08-17 12:11:12,757][131794] Avg episode rewards: #0: 16.040, true rewards: #0: 7.929
901
+ [2023-08-17 12:11:12,757][131794] Avg episode reward: 16.040, avg true_objective: 7.929
902
+ [2023-08-17 12:11:12,794][131794] Num frames 7200...
903
+ [2023-08-17 12:11:12,852][131794] Num frames 7300...
904
+ [2023-08-17 12:11:12,910][131794] Num frames 7400...
905
+ [2023-08-17 12:11:12,968][131794] Num frames 7500...
906
+ [2023-08-17 12:11:13,027][131794] Num frames 7600...
907
+ [2023-08-17 12:11:13,084][131794] Num frames 7700...
908
+ [2023-08-17 12:11:13,142][131794] Num frames 7800...
909
+ [2023-08-17 12:11:13,200][131794] Num frames 7900...
910
+ [2023-08-17 12:11:13,298][131794] Avg episode rewards: #0: 16.278, true rewards: #0: 7.978
911
+ [2023-08-17 12:11:13,299][131794] Avg episode reward: 16.278, avg true_objective: 7.978
912
+ [2023-08-17 12:11:20,895][131794] Replay video saved to /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!
913
+ [2023-08-17 12:52:38,482][131794] Loading existing experiment configuration from /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/config.json
914
+ [2023-08-17 12:52:38,483][131794] Overriding arg 'num_workers' with value 1 passed from command line
915
+ [2023-08-17 12:52:38,483][131794] Adding new argument 'no_render'=True that is not in the saved config file!
916
+ [2023-08-17 12:52:38,483][131794] Adding new argument 'save_video'=True that is not in the saved config file!
917
+ [2023-08-17 12:52:38,484][131794] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
918
+ [2023-08-17 12:52:38,484][131794] Adding new argument 'video_name'=None that is not in the saved config file!
919
+ [2023-08-17 12:52:38,485][131794] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
920
+ [2023-08-17 12:52:38,485][131794] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
921
+ [2023-08-17 12:52:38,486][131794] Adding new argument 'push_to_hub'=True that is not in the saved config file!
922
+ [2023-08-17 12:52:38,486][131794] Adding new argument 'hf_repository'='patonw/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
923
+ [2023-08-17 12:52:38,486][131794] Adding new argument 'policy_index'=0 that is not in the saved config file!
924
+ [2023-08-17 12:52:38,487][131794] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
925
+ [2023-08-17 12:52:38,487][131794] Adding new argument 'train_script'=None that is not in the saved config file!
926
+ [2023-08-17 12:52:38,487][131794] Adding new argument 'enjoy_script'=None that is not in the saved config file!
927
+ [2023-08-17 12:52:38,488][131794] Using frameskip 1 and render_action_repeat=4 for evaluation
928
+ [2023-08-17 12:52:38,491][131794] RunningMeanStd input shape: (3, 72, 128)
929
+ [2023-08-17 12:52:38,492][131794] RunningMeanStd input shape: (1,)
930
+ [2023-08-17 12:52:38,497][131794] ConvEncoder: input_channels=3
931
+ [2023-08-17 12:52:38,518][131794] Conv encoder output size: 512
932
+ [2023-08-17 12:52:38,519][131794] Policy head output size: 512
933
+ [2023-08-17 12:52:38,534][131794] Loading state from checkpoint /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
934
+ [2023-08-17 12:52:38,832][131794] Num frames 100...
935
+ [2023-08-17 12:52:38,889][131794] Num frames 200...
936
+ [2023-08-17 12:52:38,952][131794] Num frames 300...
937
+ [2023-08-17 12:52:39,009][131794] Num frames 400...
938
+ [2023-08-17 12:52:39,065][131794] Num frames 500...
939
+ [2023-08-17 12:52:39,122][131794] Num frames 600...
940
+ [2023-08-17 12:52:39,178][131794] Num frames 700...
941
+ [2023-08-17 12:52:39,237][131794] Num frames 800...
942
+ [2023-08-17 12:52:39,293][131794] Num frames 900...
943
+ [2023-08-17 12:52:39,349][131794] Num frames 1000...
944
+ [2023-08-17 12:52:39,406][131794] Num frames 1100...
945
+ [2023-08-17 12:52:39,462][131794] Num frames 1200...
946
+ [2023-08-17 12:52:39,520][131794] Num frames 1300...
947
+ [2023-08-17 12:52:39,576][131794] Num frames 1400...
948
+ [2023-08-17 12:52:39,633][131794] Num frames 1500...
949
+ [2023-08-17 12:52:39,691][131794] Num frames 1600...
950
+ [2023-08-17 12:52:39,748][131794] Num frames 1700...
951
+ [2023-08-17 12:52:39,804][131794] Num frames 1800...
952
+ [2023-08-17 12:52:39,860][131794] Num frames 1900...
953
+ [2023-08-17 12:52:39,917][131794] Num frames 2000...
954
+ [2023-08-17 12:52:39,997][131794] Avg episode rewards: #0: 47.479, true rewards: #0: 20.480
955
+ [2023-08-17 12:52:39,998][131794] Avg episode reward: 47.479, avg true_objective: 20.480
956
+ [2023-08-17 12:52:40,027][131794] Num frames 2100...
957
+ [2023-08-17 12:52:40,084][131794] Num frames 2200...
958
+ [2023-08-17 12:52:40,142][131794] Num frames 2300...
959
+ [2023-08-17 12:52:40,199][131794] Num frames 2400...
960
+ [2023-08-17 12:52:40,256][131794] Num frames 2500...
961
+ [2023-08-17 12:52:40,312][131794] Num frames 2600...
962
+ [2023-08-17 12:52:40,368][131794] Num frames 2700...
963
+ [2023-08-17 12:52:40,424][131794] Num frames 2800...
964
+ [2023-08-17 12:52:40,522][131794] Avg episode rewards: #0: 30.900, true rewards: #0: 14.400
965
+ [2023-08-17 12:52:40,523][131794] Avg episode reward: 30.900, avg true_objective: 14.400
966
+ [2023-08-17 12:52:40,535][131794] Num frames 2900...
967
+ [2023-08-17 12:52:40,591][131794] Num frames 3000...
968
+ [2023-08-17 12:52:40,648][131794] Num frames 3100...
969
+ [2023-08-17 12:52:40,704][131794] Num frames 3200...
970
+ [2023-08-17 12:52:40,760][131794] Num frames 3300...
971
+ [2023-08-17 12:52:40,815][131794] Num frames 3400...
972
+ [2023-08-17 12:52:40,899][131794] Avg episode rewards: #0: 23.853, true rewards: #0: 11.520
973
+ [2023-08-17 12:52:40,899][131794] Avg episode reward: 23.853, avg true_objective: 11.520
974
+ [2023-08-17 12:52:40,925][131794] Num frames 3500...
975
+ [2023-08-17 12:52:40,981][131794] Num frames 3600...
976
+ [2023-08-17 12:52:41,039][131794] Num frames 3700...
977
+ [2023-08-17 12:52:41,096][131794] Num frames 3800...
978
+ [2023-08-17 12:52:41,153][131794] Num frames 3900...
979
+ [2023-08-17 12:52:41,211][131794] Num frames 4000...
980
+ [2023-08-17 12:52:41,270][131794] Num frames 4100...
981
+ [2023-08-17 12:52:41,328][131794] Num frames 4200...
982
+ [2023-08-17 12:52:41,386][131794] Num frames 4300...
983
+ [2023-08-17 12:52:41,446][131794] Num frames 4400...
984
+ [2023-08-17 12:52:41,525][131794] Avg episode rewards: #0: 22.870, true rewards: #0: 11.120
985
+ [2023-08-17 12:52:41,526][131794] Avg episode reward: 22.870, avg true_objective: 11.120
986
+ [2023-08-17 12:52:41,555][131794] Num frames 4500...
987
+ [2023-08-17 12:52:41,612][131794] Num frames 4600...
988
+ [2023-08-17 12:52:41,668][131794] Num frames 4700...
989
+ [2023-08-17 12:52:41,725][131794] Num frames 4800...
990
+ [2023-08-17 12:52:41,781][131794] Num frames 4900...
991
+ [2023-08-17 12:52:41,868][131794] Avg episode rewards: #0: 20.322, true rewards: #0: 9.922
992
+ [2023-08-17 12:52:41,869][131794] Avg episode reward: 20.322, avg true_objective: 9.922
993
+ [2023-08-17 12:52:41,891][131794] Num frames 5000...
994
+ [2023-08-17 12:52:41,948][131794] Num frames 5100...
995
+ [2023-08-17 12:52:42,004][131794] Num frames 5200...
996
+ [2023-08-17 12:52:42,063][131794] Num frames 5300...
997
+ [2023-08-17 12:52:42,119][131794] Num frames 5400...
998
+ [2023-08-17 12:52:42,175][131794] Num frames 5500...
999
+ [2023-08-17 12:52:42,231][131794] Num frames 5600...
1000
+ [2023-08-17 12:52:42,287][131794] Num frames 5700...
1001
+ [2023-08-17 12:52:42,344][131794] Num frames 5800...
1002
+ [2023-08-17 12:52:42,400][131794] Num frames 5900...
1003
+ [2023-08-17 12:52:42,456][131794] Num frames 6000...
1004
+ [2023-08-17 12:52:42,513][131794] Num frames 6100...
1005
+ [2023-08-17 12:52:42,567][131794] Num frames 6200...
1006
+ [2023-08-17 12:52:42,621][131794] Num frames 6300...
1007
+ [2023-08-17 12:52:42,675][131794] Num frames 6400...
1008
+ [2023-08-17 12:52:42,762][131794] Avg episode rewards: #0: 22.108, true rewards: #0: 10.775
1009
+ [2023-08-17 12:52:42,763][131794] Avg episode reward: 22.108, avg true_objective: 10.775
1010
+ [2023-08-17 12:52:42,781][131794] Num frames 6500...
1011
+ [2023-08-17 12:52:42,836][131794] Num frames 6600...
1012
+ [2023-08-17 12:52:42,889][131794] Num frames 6700...
1013
+ [2023-08-17 12:52:42,944][131794] Num frames 6800...
1014
+ [2023-08-17 12:52:42,997][131794] Num frames 6900...
1015
+ [2023-08-17 12:52:43,051][131794] Num frames 7000...
1016
+ [2023-08-17 12:52:43,107][131794] Num frames 7100...
1017
+ [2023-08-17 12:52:43,162][131794] Num frames 7200...
1018
+ [2023-08-17 12:52:43,217][131794] Num frames 7300...
1019
+ [2023-08-17 12:52:43,285][131794] Avg episode rewards: #0: 21.751, true rewards: #0: 10.466
1020
+ [2023-08-17 12:52:43,285][131794] Avg episode reward: 21.751, avg true_objective: 10.466
1021
+ [2023-08-17 12:52:43,325][131794] Num frames 7400...
1022
+ [2023-08-17 12:52:43,381][131794] Num frames 7500...
1023
+ [2023-08-17 12:52:43,435][131794] Num frames 7600...
1024
+ [2023-08-17 12:52:43,490][131794] Num frames 7700...
1025
+ [2023-08-17 12:52:43,544][131794] Num frames 7800...
1026
+ [2023-08-17 12:52:43,602][131794] Num frames 7900...
1027
+ [2023-08-17 12:52:43,657][131794] Num frames 8000...
1028
+ [2023-08-17 12:52:43,711][131794] Num frames 8100...
1029
+ [2023-08-17 12:52:43,766][131794] Num frames 8200...
1030
+ [2023-08-17 12:52:43,824][131794] Num frames 8300...
1031
+ [2023-08-17 12:52:43,881][131794] Num frames 8400...
1032
+ [2023-08-17 12:52:43,959][131794] Avg episode rewards: #0: 22.183, true rewards: #0: 10.557
1033
+ [2023-08-17 12:52:43,960][131794] Avg episode reward: 22.183, avg true_objective: 10.557
1034
+ [2023-08-17 12:52:43,991][131794] Num frames 8500...
1035
+ [2023-08-17 12:52:44,048][131794] Num frames 8600...
1036
+ [2023-08-17 12:52:44,105][131794] Num frames 8700...
1037
+ [2023-08-17 12:52:44,162][131794] Num frames 8800...
1038
+ [2023-08-17 12:52:44,218][131794] Num frames 8900...
1039
+ [2023-08-17 12:52:44,272][131794] Num frames 9000...
1040
+ [2023-08-17 12:52:44,328][131794] Num frames 9100...
1041
+ [2023-08-17 12:52:44,383][131794] Num frames 9200...
1042
+ [2023-08-17 12:52:44,437][131794] Num frames 9300...
1043
+ [2023-08-17 12:52:44,492][131794] Num frames 9400...
1044
+ [2023-08-17 12:52:44,548][131794] Avg episode rewards: #0: 22.229, true rewards: #0: 10.451
1045
+ [2023-08-17 12:52:44,549][131794] Avg episode reward: 22.229, avg true_objective: 10.451
1046
+ [2023-08-17 12:52:44,599][131794] Num frames 9500...
1047
+ [2023-08-17 12:52:44,655][131794] Num frames 9600...
1048
+ [2023-08-17 12:52:44,709][131794] Num frames 9700...
1049
+ [2023-08-17 12:52:44,763][131794] Num frames 9800...
1050
+ [2023-08-17 12:52:44,835][131794] Avg episode rewards: #0: 20.835, true rewards: #0: 9.835
1051
+ [2023-08-17 12:52:44,835][131794] Avg episode reward: 20.835, avg true_objective: 9.835
1052
+ [2023-08-17 12:52:54,306][131794] Replay video saved to /home/patonw/code/learn/deep-rl-class/notebooks/unit8/train_dir/default_experiment/replay.mp4!