patrikz commited on
Commit
178b056
·
1 Parent(s): 41e45f5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - summarization
5
+ - generated_from_trainer
6
+ datasets:
7
+ - amazon_reviews_multi
8
+ metrics:
9
+ - rouge
10
+ model-index:
11
+ - name: mt5-small-finetuned-amazon-en-kitchen-reviews
12
+ results:
13
+ - task:
14
+ name: Sequence-to-sequence Language Modeling
15
+ type: text2text-generation
16
+ dataset:
17
+ name: amazon_reviews_multi
18
+ type: amazon_reviews_multi
19
+ config: en
20
+ split: train
21
+ args: en
22
+ metrics:
23
+ - name: Rouge1
24
+ type: rouge
25
+ value: 19.1669
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # mt5-small-finetuned-amazon-en-kitchen-reviews
32
+
33
+ This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the amazon_reviews_multi dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.0960
36
+ - Rouge1: 19.1669
37
+ - Rouge2: 10.8937
38
+ - Rougel: 18.6296
39
+ - Rougelsum: 18.7486
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 5.6e-05
59
+ - train_batch_size: 8
60
+ - eval_batch_size: 8
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 8
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
69
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
70
+ | 13.803 | 1.0 | 827 | 2.4239 | 1.7983 | 0.0 | 1.8317 | 1.7854 |
71
+ | 1.938 | 2.0 | 1654 | 1.2836 | 14.9804 | 4.7997 | 14.3848 | 14.4255 |
72
+ | 1.2922 | 3.0 | 2481 | 1.1718 | 16.3574 | 7.2689 | 15.6126 | 15.5685 |
73
+ | 1.1463 | 4.0 | 3308 | 1.1265 | 17.6554 | 8.9813 | 17.1575 | 17.2073 |
74
+ | 1.078 | 5.0 | 4135 | 1.1085 | 19.2978 | 11.5604 | 18.8279 | 18.9399 |
75
+ | 1.0453 | 6.0 | 4962 | 1.1070 | 19.3828 | 11.0161 | 18.7636 | 18.9002 |
76
+ | 1.0233 | 7.0 | 5789 | 1.1004 | 19.0604 | 10.5071 | 18.341 | 18.4669 |
77
+ | 1.012 | 8.0 | 6616 | 1.0960 | 19.1669 | 10.8937 | 18.6296 | 18.7486 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.23.1
83
+ - Pytorch 1.12.1+cu113
84
+ - Datasets 2.6.1
85
+ - Tokenizers 0.13.1