from __future__ import annotations from transformers import PretrainedConfig from torch import nn import torch from torchtyping import TensorType from .fasttext_jp_embedding import FastTextJpModel, FastTextJpConfig from transformers.modeling_outputs import SequenceClassifierOutput class FastTextForSeuqenceClassification(FastTextJpModel): """FastTextのベクトルをベースとした分類を行います。 """ def __init__(self, config: FastTextJpConfig): super().__init__(config) def forward(self, **inputs) -> SequenceClassifierOutput: """embeddingを行います。 Returns: TensorType["batch", "word", "vectors"]: 単語ごとにベクトルを返します。 """ input_ids = inputs["input_ids"] outputs = self.word_embeddings(input_ids) sentence = outputs[torch.logical_and(inputs["attention_mask"] == 1, inputs["token_type_ids"] == 0)] candidate_label = outputs[torch.logical_and( inputs["attention_mask"] == 1, inputs["token_type_ids"] == 1)] sentence_mean = torch.mean(sentence, dim=-2, keepdim=True) candidate_label_mean = torch.mean(candidate_label, dim=-2, keepdim=True) if sentence_mean.dim() == 2: p = torch.nn.functional.cosine_similarity(sentence_mean, candidate_label_mean, dim=1) logits = [[torch.log(p), -torch.inf, torch.log(1 - p)]] else: logits = [] # batch for sm, clm in zip(sentence_mean, candidate_label_mean): p = torch.nn.functional.cosine_similarity(sm, clm, dim=1) logits.append([[torch.log(p), -torch.inf, torch.log(1 - p)]]) logits = torch.FloatTensor(logits) return SequenceClassifierOutput( loss=None, logits=logits, # type: ignore hidden_states=None, attentions=None, ) # AutoModelに登録が必要だが、いろいろやり方が変わっているようで定まっていない。(2022/11/6) # https://huggingface.co/docs/transformers/custom_models#sending-the-code-to-the-hub FastTextForSeuqenceClassification.register_for_auto_class( "AutoModelForSequenceClassification")