--- language: - ja license: cc-by-sa-3.0 library_name: transformers tags: - fastText - embedding pipeline_tag: feature-extraction widget: - text: "海賊王におれはなる" example_title: "ワンピース" --- # fasttext-jp-embedding **This model is experimental.** Pretrained FastText word vector for Japanese ## Usage Google Colaboratory Example ``` ! apt install aptitude swig > /dev/null ! aptitude install mecab libmecab-dev mecab-ipadic-utf8 git make curl xz-utils file -y > /dev/null ! pip install transformers torch mecab-python3 torchtyping > /dev/null ! ln -s /etc/mecabrc /usr/local/etc/mecabrc ``` ``` from transformers import pipeline import pandas as pd import numpy as np text = "海賊王におれはなる" pipeline = pipeline("feature-extraction", model="paulhindemith/fasttext-jp-embedding", revision="2022.11.6", trust_remote_code=True) pd.DataFrame(np.array(pipeline(text)).T, columns=pipeline.tokenizer.tokenize(text)) ``` ``` pipeline.tokenizer.target_hinshi = ["動詞", "名詞", "形容詞"] pd.DataFrame(np.array(pipeline(text)).T, columns=pipeline.tokenizer.tokenize(text)) ``` ## License This model utilizes the folllowing pretrained vectors. Name: fastText Credit: https://fasttext.cc/ License: [Creative Commons Attribution-Share-Alike License 3.0](https://creativecommons.org/licenses/by-sa/3.0/) Link: https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.ja.vec