--- license: cc-by-4.0 datasets: - wikiann language: - pl pipeline_tag: token-classification widget: - text: "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę z Chrząszczyżewoszczyc, pracuję w Łękołodzkim Urzędzie Powiatowym" - text: "Jestem Krzysiek i pracuję w Ministerstwie Sportu" - text: "Na imię jej Wiktoria, pracuje w Krakowie na AGH" model-index: - name: herbert-base-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: pl split: test args: pl metrics: - name: Precision type: precision value: 0.8857142857142857 - name: Recall type: recall value: 0.9070532179048386 - name: F1 type: f1 value: 0.896256755412619 - name: Accuracy type: accuracy value: 0.9581463871961428 --- # herbert-base-ner ## Model description **herbert-base-ner** is a fine-tuned HerBERT model that can be used for **Named Entity Recognition** . It has been trained to recognize three types of entities: person (PER), location (LOC) and organization (ORG). Specifically, this model is an [*allegro/herbert-base-cased*](https://huggingface.co/allegro/herbert-base-cased) model that was fine-tuned on the Polish subset of *wikiann* dataset. ### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_checkpoint = "pczarnik/herbert-base-ner" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForTokenClassification.from_pretrained(model_checkpoint) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę "\ "z Chrząszczyżewoszczyc, pracuję w Łękołodzkim Urzędzie Powiatowym" ner_results = nlp(example) print(ner_results) ``` ```python [{'entity': 'B-PER', 'score': 0.99451494, 'index': 4, 'word': 'Grzegorz', 'start': 12, 'end': 20}, {'entity': 'I-PER', 'score': 0.99758506, 'index': 5, 'word': 'B', 'start': 21, 'end': 22}, {'entity': 'I-PER', 'score': 0.99749386, 'index': 6, 'word': 'rzę', 'start': 22, 'end': 25}, {'entity': 'I-PER', 'score': 0.9973041, 'index': 7, 'word': 'szczy', 'start': 25, 'end': 30}, {'entity': 'I-PER', 'score': 0.99682057, 'index': 8, 'word': 'szczy', 'start': 30, 'end': 35}, {'entity': 'I-PER', 'score': 0.9964832, 'index': 9, 'word': 'kiewicz', 'start': 35, 'end': 42}, {'entity': 'B-LOC', 'score': 0.99427444, 'index': 14, 'word': 'Chrzą', 'start': 55, 'end': 60}, {'entity': 'I-LOC', 'score': 0.99143463, 'index': 15, 'word': 'szczy', 'start': 60, 'end': 65}, {'entity': 'I-LOC', 'score': 0.9922201, 'index': 16, 'word': 'że', 'start': 65, 'end': 67}, {'entity': 'I-LOC', 'score': 0.9918464, 'index': 17, 'word': 'wo', 'start': 67, 'end': 69}, {'entity': 'I-LOC', 'score': 0.9900766, 'index': 18, 'word': 'szczy', 'start': 69, 'end': 74}, {'entity': 'I-LOC', 'score': 0.98823845, 'index': 19, 'word': 'c', 'start': 74, 'end': 75}, {'entity': 'B-ORG', 'score': 0.6808262, 'index': 23, 'word': 'Łę', 'start': 87, 'end': 89}, {'entity': 'I-ORG', 'score': 0.7763973, 'index': 24, 'word': 'ko', 'start': 89, 'end': 91}, {'entity': 'I-ORG', 'score': 0.77731717, 'index': 25, 'word': 'ło', 'start': 91, 'end': 93}, {'entity': 'I-ORG', 'score': 0.9108255, 'index': 26, 'word': 'dzkim', 'start': 93, 'end': 98}, {'entity': 'I-ORG', 'score': 0.98050755, 'index': 27, 'word': 'Urzędzie', 'start': 99, 'end': 107}, {'entity': 'I-ORG', 'score': 0.9789752, 'index': 28, 'word': 'Powiatowym', 'start': 108, 'end': 118}] ``` ### BibTeX entry and citation info ``` @inproceedings{mroczkowski-etal-2021-herbert, title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish", author = "Mroczkowski, Robert and Rybak, Piotr and Wr{\\'o}blewska, Alina and Gawlik, Ireneusz", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1", pages = "1--10", } ``` ``` @inproceedings{pan-etal-2017-cross, title = "Cross-lingual Name Tagging and Linking for 282 Languages", author = "Pan, Xiaoman and Zhang, Boliang and May, Jonathan and Nothman, Joel and Knight, Kevin and Ji, Heng", booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2017", address = "Vancouver, Canada", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P17-1178", doi = "10.18653/v1/P17-1178", pages = "1946--1958", } ```