Update README.md
Browse files
README.md
CHANGED
@@ -16,19 +16,30 @@ See https://huggingface.co/spaces/pdufour/Qwen2-VL-2B-Instruct-ONNX-Q4-F16 for a
|
|
16 |
**Python**
|
17 |
|
18 |
```
|
|
|
|
|
19 |
import time
|
20 |
import torch
|
21 |
import numpy as np
|
22 |
-
import onnxruntime
|
23 |
-
from PIL import Image
|
24 |
-
import os
|
25 |
-
import sys
|
26 |
import requests
|
|
|
|
|
27 |
from io import BytesIO
|
|
|
28 |
|
|
|
|
|
|
|
29 |
|
|
|
30 |
try:
|
31 |
-
from export_config import
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
except:
|
33 |
INPUT_IMAGE_SIZE = [960, 960]
|
34 |
HEIGHT_FACTOR = 10
|
@@ -36,220 +47,186 @@ except:
|
|
36 |
IMAGE_RESIZE = [HEIGHT_FACTOR * 28, WIDTH_FACTOR * 28]
|
37 |
MAX_SEQ_LENGTH = 1024
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
print(f" Model C: {onnx_model_C}")
|
52 |
-
print(f" Model D: {onnx_model_D}")
|
53 |
-
print(f" Model E: {onnx_model_E}")
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer
|
59 |
|
|
|
60 |
with torch.inference_mode():
|
61 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
num_key_value_heads = model.config.num_key_value_heads
|
65 |
-
head_dim = model.config.hidden_size //
|
66 |
num_layers = model.config.num_hidden_layers
|
67 |
hidden_size = model.config.hidden_size
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
in_name_E1 = in_name_E[1].name
|
120 |
-
in_name_E2 = in_name_E[2].name
|
121 |
-
in_name_E3 = in_name_E[3].name
|
122 |
-
in_name_E4 = in_name_E[4].name
|
123 |
-
in_name_E5 = in_name_E[5].name
|
124 |
-
in_name_E6 = in_name_E[6].name
|
125 |
-
in_name_E7 = in_name_E[7].name
|
126 |
-
out_name_E0 = out_name_E[0].name
|
127 |
-
out_name_E1 = out_name_E[1].name
|
128 |
-
out_name_E2 = out_name_E[2].name
|
129 |
-
|
130 |
-
response = requests.get(image_url)
|
131 |
image = Image.open(BytesIO(response.content))
|
132 |
-
|
133 |
if image.mode != 'RGB':
|
134 |
image = image.convert('RGB')
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
prompt = f"\n<|im_start|>user\n<|vision_start|><|vision_end|>{
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
[
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
})[0]
|
172 |
-
|
173 |
-
position_ids, = ort_session_C.run(
|
174 |
-
[out_name_C0],
|
175 |
-
{
|
176 |
-
in_name_C0: dummy
|
177 |
-
})
|
178 |
-
|
179 |
-
if use_vision:
|
180 |
-
|
181 |
-
image_embed = ort_session_A.run(
|
182 |
-
[out_name_A0],
|
183 |
-
{in_name_A0: pixel_values})[0]
|
184 |
-
|
185 |
-
ids_len += image_embed_size
|
186 |
-
|
187 |
-
split_factor = np.array(max_seq_len - ids_len[0] - image_embed_size, dtype=np.int32)
|
188 |
-
|
189 |
-
ids_len_minus = np.array(ids_len[0] - prompt_head_len[0], dtype=np.int32)
|
190 |
-
|
191 |
-
|
192 |
-
hidden_states, position_ids = ort_session_D.run(
|
193 |
-
[out_name_D0, out_name_D1],
|
194 |
{
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
}
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
[out_name_E0, out_name_E1, out_name_E2],
|
210 |
{
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
}
|
220 |
-
|
221 |
-
|
|
|
222 |
break
|
223 |
else:
|
224 |
-
|
225 |
-
if
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
if use_vision:
|
233 |
-
pos_factor = np.array(pos_factor_v + ids_len[0], dtype=np.float16)
|
234 |
else:
|
235 |
-
|
236 |
else:
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
hidden_states =
|
242 |
-
[
|
243 |
-
{
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
print(decoded_token, end="", flush=True)
|
251 |
-
|
252 |
-
generation_time = time.time() - end_time
|
253 |
```
|
254 |
|
255 |
# Technical Information:
|
|
|
16 |
**Python**
|
17 |
|
18 |
```
|
19 |
+
import os
|
20 |
+
import sys
|
21 |
import time
|
22 |
import torch
|
23 |
import numpy as np
|
|
|
|
|
|
|
|
|
24 |
import requests
|
25 |
+
import onnxruntime as ort
|
26 |
+
from PIL import Image
|
27 |
from io import BytesIO
|
28 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer
|
29 |
|
30 |
+
# Constants
|
31 |
+
DEBUG = True
|
32 |
+
PRINT = print
|
33 |
|
34 |
+
# Try importing config, set defaults if not found
|
35 |
try:
|
36 |
+
from export_config import (
|
37 |
+
INPUT_IMAGE_SIZE,
|
38 |
+
IMAGE_RESIZE,
|
39 |
+
MAX_SEQ_LENGTH,
|
40 |
+
HEIGHT_FACTOR,
|
41 |
+
WIDTH_FACTOR
|
42 |
+
)
|
43 |
except:
|
44 |
INPUT_IMAGE_SIZE = [960, 960]
|
45 |
HEIGHT_FACTOR = 10
|
|
|
47 |
IMAGE_RESIZE = [HEIGHT_FACTOR * 28, WIDTH_FACTOR * 28]
|
48 |
MAX_SEQ_LENGTH = 1024
|
49 |
|
50 |
+
# Command line arguments
|
51 |
+
model_path = sys.argv[1]
|
52 |
+
onnx_path = sys.argv[2]
|
53 |
|
54 |
+
# ONNX model paths
|
55 |
+
model_paths = {
|
56 |
+
'A': os.path.join(onnx_path, 'QwenVL_A_q4f16.onnx'),
|
57 |
+
'B': os.path.join(onnx_path, 'QwenVL_B_q4f16.onnx'),
|
58 |
+
'C': os.path.join(onnx_path, 'QwenVL_C_q4f16.onnx'),
|
59 |
+
'D': os.path.join(onnx_path, 'QwenVL_D_q4f16.onnx'),
|
60 |
+
'E': os.path.join(onnx_path, 'QwenVL_E_q4f16.onnx')
|
61 |
+
}
|
62 |
|
63 |
+
PRINT('\n[PATHS] ONNX model paths:')
|
64 |
+
for key, path in model_paths.items():
|
65 |
+
PRINT(f" Model {key}: {path}")
|
|
|
|
|
|
|
66 |
|
67 |
+
# Test image and prompt
|
68 |
+
TEST_IMAGE_URL = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg'
|
69 |
+
TEST_PROMPT = 'Describe this image.'
|
|
|
70 |
|
71 |
+
# Initialize model and tokenizer
|
72 |
with torch.inference_mode():
|
73 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
74 |
+
model_path,
|
75 |
+
torch_dtype=torch.float32,
|
76 |
+
device_map='mps',
|
77 |
+
low_cpu_mem_usage=DEBUG
|
78 |
+
)
|
79 |
+
|
80 |
+
max_length = MAX_SEQ_LENGTH
|
81 |
+
num_attention_heads = model.config.num_attention_heads
|
82 |
num_key_value_heads = model.config.num_key_value_heads
|
83 |
+
head_dim = model.config.hidden_size // num_attention_heads
|
84 |
num_layers = model.config.num_hidden_layers
|
85 |
hidden_size = model.config.hidden_size
|
86 |
|
87 |
+
MAX_ITERATIONS = 12
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=DEBUG)
|
89 |
+
|
90 |
+
# ONNX session options
|
91 |
+
session_options = ort.SessionOptions()
|
92 |
+
session_options.log_severity_level = 3
|
93 |
+
session_options.inter_op_num_threads = 0
|
94 |
+
session_options.intra_op_num_threads = 0
|
95 |
+
session_options.enable_cpu_mem_arena = DEBUG
|
96 |
+
session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
97 |
+
session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
98 |
+
session_options.add_session_config_entry('session.intra_op.allow_spinning', '1')
|
99 |
+
session_options.add_session_config_entry('session.inter_op.allow_spinning', '1')
|
100 |
+
|
101 |
+
# Initialize ONNX sessions
|
102 |
+
sessions = {
|
103 |
+
'A': ort.InferenceSession(model_paths['A'], sess_options=session_options),
|
104 |
+
'B': ort.InferenceSession(model_paths['B'], sess_options=session_options),
|
105 |
+
'C': ort.InferenceSession(model_paths['C'], sess_options=session_options),
|
106 |
+
'D': ort.InferenceSession(model_paths['D'], sess_options=session_options),
|
107 |
+
'E': ort.InferenceSession(model_paths['E'], sess_options=session_options)
|
108 |
+
}
|
109 |
+
|
110 |
+
# Get input/output names for each session
|
111 |
+
inputs = {
|
112 |
+
'A': {
|
113 |
+
'input': sessions['A'].get_inputs()[0].name,
|
114 |
+
'output': sessions['A'].get_outputs()[0].name
|
115 |
+
},
|
116 |
+
'B': {
|
117 |
+
'input_ids': sessions['B'].get_inputs()[0].name,
|
118 |
+
'input_lengths': sessions['B'].get_inputs()[1].name,
|
119 |
+
'output': sessions['B'].get_outputs()[0].name
|
120 |
+
},
|
121 |
+
'C': {
|
122 |
+
'input': sessions['C'].get_inputs()[0].name,
|
123 |
+
'output': sessions['C'].get_outputs()[0].name
|
124 |
+
},
|
125 |
+
'D': {
|
126 |
+
'names': [inp.name for inp in sessions['D'].get_inputs()],
|
127 |
+
'outputs': [out.name for out in sessions['D'].get_outputs()]
|
128 |
+
},
|
129 |
+
'E': {
|
130 |
+
'names': [inp.name for inp in sessions['E'].get_inputs()],
|
131 |
+
'outputs': [out.name for out in sessions['E'].get_outputs()]
|
132 |
+
}
|
133 |
+
}
|
134 |
+
|
135 |
+
# Process image
|
136 |
+
response = requests.get(TEST_IMAGE_URL)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
image = Image.open(BytesIO(response.content))
|
138 |
+
image = image.resize((INPUT_IMAGE_SIZE[1], INPUT_IMAGE_SIZE[0]))
|
139 |
if image.mode != 'RGB':
|
140 |
image = image.convert('RGB')
|
141 |
|
142 |
+
image_array = np.transpose(np.array(image).astype(np.float32), (2, 0, 1))
|
143 |
+
image_array = np.expand_dims(image_array, axis=0) / 255.
|
144 |
+
|
145 |
+
use_images = DEBUG
|
146 |
+
prompt = f"\n<|im_start|>user\n<|vision_start|><|vision_end|>{TEST_PROMPT}<|im_end|>\n<|im_start|>assistant\n"
|
147 |
+
eos_token_id = np.array([5], dtype=np.int64)
|
148 |
+
total_ids = WIDTH_FACTOR * HEIGHT_FACTOR
|
149 |
+
|
150 |
+
# Initialize tensors
|
151 |
+
input_ids = tokenizer(prompt, return_tensors='pt')['input_ids']
|
152 |
+
input_lengths = np.array([input_ids.shape[1]], dtype=np.int64)
|
153 |
+
tokens = np.zeros(max_length, dtype=np.int32)
|
154 |
+
tokens[:input_lengths[0]] = input_ids[0, :]
|
155 |
+
position = np.zeros(1, dtype=np.int64)
|
156 |
+
|
157 |
+
# Initialize cache tensors
|
158 |
+
key_cache = np.zeros((num_layers, num_key_value_heads, max_length, head_dim), dtype=np.float16)
|
159 |
+
value_cache = key_cache.copy()
|
160 |
+
logits_mask = np.array([-65504.], dtype=np.float16)
|
161 |
+
position_mask = np.array([.0], dtype=np.float16)
|
162 |
+
max_total_tokens = 1 - total_ids + WIDTH_FACTOR
|
163 |
+
batch_size = np.array(0, dtype=np.int32)
|
164 |
+
|
165 |
+
# Process initial inputs
|
166 |
+
hidden_states = sessions['B'].run([inputs['B']['output']],
|
167 |
+
{inputs['B']['input_ids']: tokens, inputs['B']['input_lengths']: input_lengths})[0]
|
168 |
+
batch_size, = sessions['C'].run([inputs['C']['output']], {inputs['C']['input']: batch_size})
|
169 |
+
|
170 |
+
if use_images:
|
171 |
+
image_features = sessions['A'].run([inputs['A']['output']], {inputs['A']['input']: image_array})[0]
|
172 |
+
input_lengths += total_ids
|
173 |
+
remaining_tokens = np.array(max_length - input_lengths[0] - total_ids, dtype=np.int32)
|
174 |
+
tokens_to_stop = np.array(input_lengths[0] - eos_token_id[0], dtype=np.int32)
|
175 |
+
hidden_states, batch_size = sessions['D'].run(
|
176 |
+
[inputs['D']['outputs'][0], inputs['D']['outputs'][1]],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
{
|
178 |
+
inputs['D']['names'][0]: hidden_states,
|
179 |
+
inputs['D']['names'][1]: image_features,
|
180 |
+
inputs['D']['names'][2]: input_lengths,
|
181 |
+
inputs['D']['names'][3]: tokens_to_stop,
|
182 |
+
inputs['D']['names'][4]: remaining_tokens
|
183 |
+
}
|
184 |
+
)
|
185 |
+
|
186 |
+
start_time = time.time()
|
187 |
+
iterations = 0
|
188 |
+
|
189 |
+
while (iterations < MAX_ITERATIONS) & (position < max_length):
|
190 |
+
token, key_cache, value_cache = sessions['E'].run(
|
191 |
+
[inputs['E']['outputs'][0], inputs['E']['outputs'][1], inputs['E']['outputs'][2]],
|
|
|
192 |
{
|
193 |
+
inputs['E']['names'][0]: hidden_states,
|
194 |
+
inputs['E']['names'][1]: logits_mask,
|
195 |
+
inputs['E']['names'][2]: key_cache,
|
196 |
+
inputs['E']['names'][3]: value_cache,
|
197 |
+
inputs['E']['names'][4]: position,
|
198 |
+
inputs['E']['names'][5]: input_lengths,
|
199 |
+
inputs['E']['names'][6]: batch_size,
|
200 |
+
inputs['E']['names'][7]: position_mask
|
201 |
+
}
|
202 |
+
)
|
203 |
+
|
204 |
+
if (token == 151643) | (token == 151645):
|
205 |
break
|
206 |
else:
|
207 |
+
iterations += 1
|
208 |
+
if iterations < 2:
|
209 |
+
position += input_lengths[0]
|
210 |
+
input_lengths[0] = 1
|
211 |
+
logits_mask = np.array([.0], dtype=np.float16)
|
212 |
+
if use_images:
|
213 |
+
position_mask = np.array(max_total_tokens + input_lengths[0], dtype=np.float16)
|
|
|
|
|
|
|
214 |
else:
|
215 |
+
position_mask = np.array(position[0] + 1, dtype=np.float16)
|
216 |
else:
|
217 |
+
position += 1
|
218 |
+
position_mask += 1
|
219 |
+
|
220 |
+
tokens[0] = token
|
221 |
+
hidden_states = sessions['B'].run(
|
222 |
+
[inputs['B']['output']],
|
223 |
+
{inputs['B']['input_ids']: tokens, inputs['B']['input_lengths']: input_lengths}
|
224 |
+
)[0]
|
225 |
+
decoded_token = tokenizer.decode(token)
|
226 |
+
PRINT(f"Decoded token: {decoded_token}")
|
227 |
+
PRINT(decoded_token, end='', flush=DEBUG)
|
228 |
+
|
229 |
+
total_time = time.time() - start_time
|
|
|
|
|
|
|
230 |
```
|
231 |
|
232 |
# Technical Information:
|