pdufour commited on
Commit
2b6e2f8
·
verified ·
1 Parent(s): db8df50

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +177 -200
README.md CHANGED
@@ -16,19 +16,30 @@ See https://huggingface.co/spaces/pdufour/Qwen2-VL-2B-Instruct-ONNX-Q4-F16 for a
16
  **Python**
17
 
18
  ```
 
 
19
  import time
20
  import torch
21
  import numpy as np
22
- import onnxruntime
23
- from PIL import Image
24
- import os
25
- import sys
26
  import requests
 
 
27
  from io import BytesIO
 
28
 
 
 
 
29
 
 
30
  try:
31
- from export_config import INPUT_IMAGE_SIZE, IMAGE_RESIZE, MAX_SEQ_LENGTH, HEIGHT_FACTOR, WIDTH_FACTOR
 
 
 
 
 
 
32
  except:
33
  INPUT_IMAGE_SIZE = [960, 960]
34
  HEIGHT_FACTOR = 10
@@ -36,220 +47,186 @@ except:
36
  IMAGE_RESIZE = [HEIGHT_FACTOR * 28, WIDTH_FACTOR * 28]
37
  MAX_SEQ_LENGTH = 1024
38
 
39
- path = sys.argv[1]
40
- script_dir = sys.argv[2]
 
41
 
42
- onnx_model_A = os.path.join(script_dir, 'QwenVL_A.onnx')
43
- onnx_model_B = os.path.join(script_dir, 'QwenVL_B_q4f16.onnx')
44
- onnx_model_C = os.path.join(script_dir, 'QwenVL_C_q4f16.onnx')
45
- onnx_model_D = os.path.join(script_dir, 'QwenVL_D_q4f16.onnx')
46
- onnx_model_E = os.path.join(script_dir, 'QwenVL_E_q4f16.onnx')
 
 
 
47
 
48
- print("\n[PATHS] ONNX model paths:")
49
- print(f" Model A: {onnx_model_A}")
50
- print(f" Model B: {onnx_model_B}")
51
- print(f" Model C: {onnx_model_C}")
52
- print(f" Model D: {onnx_model_D}")
53
- print(f" Model E: {onnx_model_E}")
54
 
55
- image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
56
- query = "Describe this image."
57
-
58
- from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer
59
 
 
60
  with torch.inference_mode():
61
- model = Qwen2VLForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float32, device_map="mps", low_cpu_mem_usage=True)
62
- max_seq_len = MAX_SEQ_LENGTH
63
- num_heads = model.config.num_attention_heads
 
 
 
 
 
 
64
  num_key_value_heads = model.config.num_key_value_heads
65
- head_dim = model.config.hidden_size // num_heads
66
  num_layers = model.config.num_hidden_layers
67
  hidden_size = model.config.hidden_size
68
 
69
-
70
- max_single_chat_length = 12
71
-
72
- tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
73
-
74
- session_opts = onnxruntime.SessionOptions()
75
- session_opts.log_severity_level = 3
76
- session_opts.inter_op_num_threads = 0
77
- session_opts.intra_op_num_threads = 0
78
- session_opts.enable_cpu_mem_arena = True
79
- session_opts.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
80
- session_opts.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
81
- session_opts.add_session_config_entry("session.intra_op.allow_spinning", "1")
82
- session_opts.add_session_config_entry("session.inter_op.allow_spinning", "1")
83
-
84
- ort_session_A = onnxruntime.InferenceSession(onnx_model_A, sess_options=session_opts)
85
- ort_session_B = onnxruntime.InferenceSession(onnx_model_B, sess_options=session_opts)
86
- ort_session_C = onnxruntime.InferenceSession(onnx_model_C, sess_options=session_opts)
87
- ort_session_D = onnxruntime.InferenceSession(onnx_model_D, sess_options=session_opts)
88
- ort_session_E = onnxruntime.InferenceSession(onnx_model_E, sess_options=session_opts)
89
-
90
- in_name_A = ort_session_A.get_inputs()
91
- out_name_A = ort_session_A.get_outputs()
92
- in_name_A0 = in_name_A[0].name
93
- out_name_A0 = out_name_A[0].name
94
-
95
- in_name_B = ort_session_B.get_inputs()
96
- out_name_B = ort_session_B.get_outputs()
97
- in_name_B0 = in_name_B[0].name
98
- in_name_B1 = in_name_B[1].name
99
- out_name_B0 = out_name_B[0].name
100
-
101
- in_name_C = ort_session_C.get_inputs()
102
- out_name_C = ort_session_C.get_outputs()
103
- in_name_C0 = in_name_C[0].name
104
- out_name_C0 = out_name_C[0].name
105
-
106
- in_name_D = ort_session_D.get_inputs()
107
- out_name_D = ort_session_D.get_outputs()
108
- in_name_D0 = in_name_D[0].name
109
- in_name_D1 = in_name_D[1].name
110
- in_name_D2 = in_name_D[2].name
111
- in_name_D3 = in_name_D[3].name
112
- in_name_D4 = in_name_D[4].name
113
- out_name_D0 = out_name_D[0].name
114
- out_name_D1 = out_name_D[1].name
115
-
116
- in_name_E = ort_session_E.get_inputs()
117
- out_name_E = ort_session_E.get_outputs()
118
- in_name_E0 = in_name_E[0].name
119
- in_name_E1 = in_name_E[1].name
120
- in_name_E2 = in_name_E[2].name
121
- in_name_E3 = in_name_E[3].name
122
- in_name_E4 = in_name_E[4].name
123
- in_name_E5 = in_name_E[5].name
124
- in_name_E6 = in_name_E[6].name
125
- in_name_E7 = in_name_E[7].name
126
- out_name_E0 = out_name_E[0].name
127
- out_name_E1 = out_name_E[1].name
128
- out_name_E2 = out_name_E[2].name
129
-
130
- response = requests.get(image_url)
131
  image = Image.open(BytesIO(response.content))
132
-
133
  if image.mode != 'RGB':
134
  image = image.convert('RGB')
135
 
136
- pixel_values = np.transpose(np.array(image).astype(np.float32), (2, 0, 1))
137
- pixel_values = np.expand_dims(pixel_values, axis=0) / 255.0
138
- use_vision = True
139
-
140
- prompt = f"\n<|im_start|>user\n<|vision_start|><|vision_end|>{query}<|im_end|>\n<|im_start|>assistant\n"
141
- prompt_head_len = np.array([5], dtype=np.int64)
142
-
143
- image_embed_size = WIDTH_FACTOR * HEIGHT_FACTOR
144
-
145
- token = tokenizer(prompt, return_tensors='pt')['input_ids']
146
-
147
- ids_len = np.array([token.shape[1]], dtype=np.int64)
148
-
149
- input_ids = np.zeros(max_seq_len, dtype=np.int32)
150
- input_ids[:ids_len[0]] = token[0, :]
151
-
152
- history_len = np.zeros(1, dtype=np.int64)
153
-
154
- past_key_states = np.zeros((num_layers, num_key_value_heads, max_seq_len, head_dim), dtype=np.float16)
155
-
156
- past_values_states = past_key_states
157
-
158
- attention_mask = np.array([-65504.0], dtype=np.float16)
159
-
160
- pos_factor = np.array([0.0], dtype=np.float16)
161
-
162
- pos_factor_v = 1 - image_embed_size + WIDTH_FACTOR
163
-
164
- dummy = np.array(0, dtype=np.int32)
165
-
166
- hidden_states = ort_session_B.run(
167
- [out_name_B0],
168
- {
169
- in_name_B0: input_ids,
170
- in_name_B1: ids_len
171
- })[0]
172
-
173
- position_ids, = ort_session_C.run(
174
- [out_name_C0],
175
- {
176
- in_name_C0: dummy
177
- })
178
-
179
- if use_vision:
180
-
181
- image_embed = ort_session_A.run(
182
- [out_name_A0],
183
- {in_name_A0: pixel_values})[0]
184
-
185
- ids_len += image_embed_size
186
-
187
- split_factor = np.array(max_seq_len - ids_len[0] - image_embed_size, dtype=np.int32)
188
-
189
- ids_len_minus = np.array(ids_len[0] - prompt_head_len[0], dtype=np.int32)
190
-
191
-
192
- hidden_states, position_ids = ort_session_D.run(
193
- [out_name_D0, out_name_D1],
194
  {
195
- in_name_D0: hidden_states,
196
- in_name_D1: image_embed,
197
- in_name_D2: ids_len,
198
- in_name_D3: ids_len_minus,
199
- in_name_D4: split_factor
200
- })
201
-
202
- end_time = time.time()
203
-
204
- end_time = time.time()
205
- num_decode = 0
206
-
207
- while (num_decode < max_single_chat_length) & (history_len < max_seq_len):
208
- token_id, past_key_states, past_values_states = ort_session_E.run(
209
- [out_name_E0, out_name_E1, out_name_E2],
210
  {
211
- in_name_E0: hidden_states,
212
- in_name_E1: attention_mask,
213
- in_name_E2: past_key_states,
214
- in_name_E3: past_values_states,
215
- in_name_E4: history_len,
216
- in_name_E5: ids_len,
217
- in_name_E6: position_ids,
218
- in_name_E7: pos_factor
219
- })
220
-
221
- if (token_id == 151643) | (token_id == 151645):
 
222
  break
223
  else:
224
- num_decode += 1
225
- if num_decode < 2:
226
- history_len += ids_len[0]
227
-
228
- ids_len[0] = 1
229
-
230
- attention_mask = np.array([0.0], dtype=np.float16)
231
-
232
- if use_vision:
233
- pos_factor = np.array(pos_factor_v + ids_len[0], dtype=np.float16)
234
  else:
235
- pos_factor = np.array(history_len[0] + 1, dtype=np.float16)
236
  else:
237
- history_len += 1
238
- pos_factor += 1
239
-
240
- input_ids[0] = token_id
241
- hidden_states = ort_session_B.run(
242
- [out_name_B0],
243
- {
244
- in_name_B0: input_ids,
245
- in_name_B1: ids_len
246
- })[0]
247
-
248
- decoded_token = tokenizer.decode(token_id)
249
- print(f"Decoded token: {decoded_token}")
250
- print(decoded_token, end="", flush=True)
251
-
252
- generation_time = time.time() - end_time
253
  ```
254
 
255
  # Technical Information:
 
16
  **Python**
17
 
18
  ```
19
+ import os
20
+ import sys
21
  import time
22
  import torch
23
  import numpy as np
 
 
 
 
24
  import requests
25
+ import onnxruntime as ort
26
+ from PIL import Image
27
  from io import BytesIO
28
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer
29
 
30
+ # Constants
31
+ DEBUG = True
32
+ PRINT = print
33
 
34
+ # Try importing config, set defaults if not found
35
  try:
36
+ from export_config import (
37
+ INPUT_IMAGE_SIZE,
38
+ IMAGE_RESIZE,
39
+ MAX_SEQ_LENGTH,
40
+ HEIGHT_FACTOR,
41
+ WIDTH_FACTOR
42
+ )
43
  except:
44
  INPUT_IMAGE_SIZE = [960, 960]
45
  HEIGHT_FACTOR = 10
 
47
  IMAGE_RESIZE = [HEIGHT_FACTOR * 28, WIDTH_FACTOR * 28]
48
  MAX_SEQ_LENGTH = 1024
49
 
50
+ # Command line arguments
51
+ model_path = sys.argv[1]
52
+ onnx_path = sys.argv[2]
53
 
54
+ # ONNX model paths
55
+ model_paths = {
56
+ 'A': os.path.join(onnx_path, 'QwenVL_A_q4f16.onnx'),
57
+ 'B': os.path.join(onnx_path, 'QwenVL_B_q4f16.onnx'),
58
+ 'C': os.path.join(onnx_path, 'QwenVL_C_q4f16.onnx'),
59
+ 'D': os.path.join(onnx_path, 'QwenVL_D_q4f16.onnx'),
60
+ 'E': os.path.join(onnx_path, 'QwenVL_E_q4f16.onnx')
61
+ }
62
 
63
+ PRINT('\n[PATHS] ONNX model paths:')
64
+ for key, path in model_paths.items():
65
+ PRINT(f" Model {key}: {path}")
 
 
 
66
 
67
+ # Test image and prompt
68
+ TEST_IMAGE_URL = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg'
69
+ TEST_PROMPT = 'Describe this image.'
 
70
 
71
+ # Initialize model and tokenizer
72
  with torch.inference_mode():
73
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
74
+ model_path,
75
+ torch_dtype=torch.float32,
76
+ device_map='mps',
77
+ low_cpu_mem_usage=DEBUG
78
+ )
79
+
80
+ max_length = MAX_SEQ_LENGTH
81
+ num_attention_heads = model.config.num_attention_heads
82
  num_key_value_heads = model.config.num_key_value_heads
83
+ head_dim = model.config.hidden_size // num_attention_heads
84
  num_layers = model.config.num_hidden_layers
85
  hidden_size = model.config.hidden_size
86
 
87
+ MAX_ITERATIONS = 12
88
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=DEBUG)
89
+
90
+ # ONNX session options
91
+ session_options = ort.SessionOptions()
92
+ session_options.log_severity_level = 3
93
+ session_options.inter_op_num_threads = 0
94
+ session_options.intra_op_num_threads = 0
95
+ session_options.enable_cpu_mem_arena = DEBUG
96
+ session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
97
+ session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
98
+ session_options.add_session_config_entry('session.intra_op.allow_spinning', '1')
99
+ session_options.add_session_config_entry('session.inter_op.allow_spinning', '1')
100
+
101
+ # Initialize ONNX sessions
102
+ sessions = {
103
+ 'A': ort.InferenceSession(model_paths['A'], sess_options=session_options),
104
+ 'B': ort.InferenceSession(model_paths['B'], sess_options=session_options),
105
+ 'C': ort.InferenceSession(model_paths['C'], sess_options=session_options),
106
+ 'D': ort.InferenceSession(model_paths['D'], sess_options=session_options),
107
+ 'E': ort.InferenceSession(model_paths['E'], sess_options=session_options)
108
+ }
109
+
110
+ # Get input/output names for each session
111
+ inputs = {
112
+ 'A': {
113
+ 'input': sessions['A'].get_inputs()[0].name,
114
+ 'output': sessions['A'].get_outputs()[0].name
115
+ },
116
+ 'B': {
117
+ 'input_ids': sessions['B'].get_inputs()[0].name,
118
+ 'input_lengths': sessions['B'].get_inputs()[1].name,
119
+ 'output': sessions['B'].get_outputs()[0].name
120
+ },
121
+ 'C': {
122
+ 'input': sessions['C'].get_inputs()[0].name,
123
+ 'output': sessions['C'].get_outputs()[0].name
124
+ },
125
+ 'D': {
126
+ 'names': [inp.name for inp in sessions['D'].get_inputs()],
127
+ 'outputs': [out.name for out in sessions['D'].get_outputs()]
128
+ },
129
+ 'E': {
130
+ 'names': [inp.name for inp in sessions['E'].get_inputs()],
131
+ 'outputs': [out.name for out in sessions['E'].get_outputs()]
132
+ }
133
+ }
134
+
135
+ # Process image
136
+ response = requests.get(TEST_IMAGE_URL)
 
 
 
 
 
 
 
 
 
 
 
 
137
  image = Image.open(BytesIO(response.content))
138
+ image = image.resize((INPUT_IMAGE_SIZE[1], INPUT_IMAGE_SIZE[0]))
139
  if image.mode != 'RGB':
140
  image = image.convert('RGB')
141
 
142
+ image_array = np.transpose(np.array(image).astype(np.float32), (2, 0, 1))
143
+ image_array = np.expand_dims(image_array, axis=0) / 255.
144
+
145
+ use_images = DEBUG
146
+ prompt = f"\n<|im_start|>user\n<|vision_start|><|vision_end|>{TEST_PROMPT}<|im_end|>\n<|im_start|>assistant\n"
147
+ eos_token_id = np.array([5], dtype=np.int64)
148
+ total_ids = WIDTH_FACTOR * HEIGHT_FACTOR
149
+
150
+ # Initialize tensors
151
+ input_ids = tokenizer(prompt, return_tensors='pt')['input_ids']
152
+ input_lengths = np.array([input_ids.shape[1]], dtype=np.int64)
153
+ tokens = np.zeros(max_length, dtype=np.int32)
154
+ tokens[:input_lengths[0]] = input_ids[0, :]
155
+ position = np.zeros(1, dtype=np.int64)
156
+
157
+ # Initialize cache tensors
158
+ key_cache = np.zeros((num_layers, num_key_value_heads, max_length, head_dim), dtype=np.float16)
159
+ value_cache = key_cache.copy()
160
+ logits_mask = np.array([-65504.], dtype=np.float16)
161
+ position_mask = np.array([.0], dtype=np.float16)
162
+ max_total_tokens = 1 - total_ids + WIDTH_FACTOR
163
+ batch_size = np.array(0, dtype=np.int32)
164
+
165
+ # Process initial inputs
166
+ hidden_states = sessions['B'].run([inputs['B']['output']],
167
+ {inputs['B']['input_ids']: tokens, inputs['B']['input_lengths']: input_lengths})[0]
168
+ batch_size, = sessions['C'].run([inputs['C']['output']], {inputs['C']['input']: batch_size})
169
+
170
+ if use_images:
171
+ image_features = sessions['A'].run([inputs['A']['output']], {inputs['A']['input']: image_array})[0]
172
+ input_lengths += total_ids
173
+ remaining_tokens = np.array(max_length - input_lengths[0] - total_ids, dtype=np.int32)
174
+ tokens_to_stop = np.array(input_lengths[0] - eos_token_id[0], dtype=np.int32)
175
+ hidden_states, batch_size = sessions['D'].run(
176
+ [inputs['D']['outputs'][0], inputs['D']['outputs'][1]],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
  {
178
+ inputs['D']['names'][0]: hidden_states,
179
+ inputs['D']['names'][1]: image_features,
180
+ inputs['D']['names'][2]: input_lengths,
181
+ inputs['D']['names'][3]: tokens_to_stop,
182
+ inputs['D']['names'][4]: remaining_tokens
183
+ }
184
+ )
185
+
186
+ start_time = time.time()
187
+ iterations = 0
188
+
189
+ while (iterations < MAX_ITERATIONS) & (position < max_length):
190
+ token, key_cache, value_cache = sessions['E'].run(
191
+ [inputs['E']['outputs'][0], inputs['E']['outputs'][1], inputs['E']['outputs'][2]],
 
192
  {
193
+ inputs['E']['names'][0]: hidden_states,
194
+ inputs['E']['names'][1]: logits_mask,
195
+ inputs['E']['names'][2]: key_cache,
196
+ inputs['E']['names'][3]: value_cache,
197
+ inputs['E']['names'][4]: position,
198
+ inputs['E']['names'][5]: input_lengths,
199
+ inputs['E']['names'][6]: batch_size,
200
+ inputs['E']['names'][7]: position_mask
201
+ }
202
+ )
203
+
204
+ if (token == 151643) | (token == 151645):
205
  break
206
  else:
207
+ iterations += 1
208
+ if iterations < 2:
209
+ position += input_lengths[0]
210
+ input_lengths[0] = 1
211
+ logits_mask = np.array([.0], dtype=np.float16)
212
+ if use_images:
213
+ position_mask = np.array(max_total_tokens + input_lengths[0], dtype=np.float16)
 
 
 
214
  else:
215
+ position_mask = np.array(position[0] + 1, dtype=np.float16)
216
  else:
217
+ position += 1
218
+ position_mask += 1
219
+
220
+ tokens[0] = token
221
+ hidden_states = sessions['B'].run(
222
+ [inputs['B']['output']],
223
+ {inputs['B']['input_ids']: tokens, inputs['B']['input_lengths']: input_lengths}
224
+ )[0]
225
+ decoded_token = tokenizer.decode(token)
226
+ PRINT(f"Decoded token: {decoded_token}")
227
+ PRINT(decoded_token, end='', flush=DEBUG)
228
+
229
+ total_time = time.time() - start_time
 
 
 
230
  ```
231
 
232
  # Technical Information: