--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - gtzan metrics: - accuracy - precision - recall - f1 model-index: - name: music-genre-detector-finetuned-gtzan_dset results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: gtzan metrics: - name: Accuracy type: accuracy value: 0.9298245614035088 - name: Precision type: precision value: 0.9292447472185437 - name: Recall type: recall value: 0.9298245614035088 - name: F1 type: f1 value: 0.9293437948869628 --- # music-genre-detector-finetuned-gtzan_dset This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.2288 - Accuracy: 0.9298 - Precision: 0.9292 - Recall: 0.9298 - F1: 0.9293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.2522 | 0.98 | 49 | 1.6370 | 0.6090 | 0.6189 | 0.6090 | 0.5764 | | 1.2901 | 1.98 | 99 | 0.9974 | 0.7556 | 0.7655 | 0.7556 | 0.7426 | | 1.0046 | 2.99 | 149 | 0.6645 | 0.8195 | 0.8226 | 0.8195 | 0.8162 | | 0.5952 | 3.99 | 199 | 0.5054 | 0.8459 | 0.8561 | 0.8459 | 0.8460 | | 0.3596 | 4.99 | 249 | 0.3729 | 0.9023 | 0.9117 | 0.9023 | 0.9041 | | 0.2534 | 5.99 | 299 | 0.2953 | 0.9073 | 0.9088 | 0.9073 | 0.9075 | | 0.1413 | 7.0 | 349 | 0.2545 | 0.9223 | 0.9229 | 0.9223 | 0.9216 | | 0.0759 | 8.0 | 399 | 0.2593 | 0.9198 | 0.9209 | 0.9198 | 0.9190 | | 0.0491 | 8.98 | 448 | 0.2288 | 0.9298 | 0.9292 | 0.9298 | 0.9293 | | 0.0355 | 9.82 | 490 | 0.2392 | 0.9223 | 0.9231 | 0.9223 | 0.9221 | ### Framework versions - Transformers 4.33.1 - Pytorch 1.10.2+cu111 - Datasets 2.14.5 - Tokenizers 0.13.3