--- license: agpl-3.0 language: - de base_model: - deepset/gbert-base pipeline_tag: token-classification --- # MEDNER.DE: Medicinal Product Entity Recognition in German-Specific Contexts Released in December 2024, this is a German BERT language model further pretrained on `deepset/gbert-base` using a pharmacovigilance-related case summary corpus. The model has been fine-tuned for Named Entity Recognition (NER) tasks on an automatically annotated dataset to recognize medicinal products such as medications and vaccines. In our paper, we outline the steps taken to train this model and demonstrate its superior performance compared to previous approaches --- ## Overview - **Paper**: [https://... - **Architecture**: MLM_based BERT Base - **Language**: German - **Supported Labels**: Medicinal Product **Model Name**: MEDNER.DE --- ## How to Use ### Use a pipeline as a high-level helper ```python from transformers import pipeline # Load the pipeline model = pipeline("ner", model="pei-germany/MEDNER-de-fp-gbert", aggregation_strategy='simple') # Input text text="Der Patient bekam den COVID-Impfstoff und nahm danach Aspirin." # Get predictions predictions = model(text) print(predictions) ``` ### Load model directly ```python from transformers import AutoTokenizer, AutoModelForTokenClassification import torch # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("pei-germany/MEDNER-de-fp-gbert") model = AutoModelForTokenClassification.from_pretrained("pei-germany/MEDNER-de-fp-gbert") text="Der Patient bekam den COVID-Impfstoff und nahm danach Aspirin." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) # Process logits and map predictions to labels predictions = [ (token, model.config.id2label[label.item()]) for token, label in zip( tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]), torch.argmax(torch.softmax(outputs.logits, dim=-1), dim=-1)[0] ) if token not in tokenizer.all_special_tokens ] print(predictions) ``` --- # Authors Farnaz Zeidi, Manuela Messelhäußer, Roman Christof, Xing David Wang, Ulf Leser, Dirk Mentzer, Renate König, Liam Childs. --- ## License This model is shared under the [GNU Affero General Public License v3.0 License](https://choosealicense.com/licenses/agpl-3.0/).