nb-distil-whisper-large-pytorch3 / run_large_training.sh
pere's picture
Saving best state, step 500, val wer 14.996
6c015e5 verified
#!/usr/bin/env bash
accelerate launch run_distillation.py \
--model_name_or_path "./previous-36500-epoch1-wer-15-250" \
--teacher_model_name_or_path "NbAiLab/nb-whisper-large" \
--train_dataset_name "NbAiLab/annotated_distil_raw_ncc_speech_v7_large" \
--train_dataset_config_name "" \
--train_split_name "train" \
--eval_dataset_name "NbAiLab/annotated_distil_raw_ncc_speech_v7_large" \
--eval_dataset_config_name "" \
--eval_split_name "validation" \
--eval_steps 500 \
--save_steps 1000 \
--warmup_steps 1000 \
--learning_rate 0.0003 \
--lr_scheduler_type "constant_with_warmup" \
--timestamp_probability 0.2 \
--condition_on_prev_probability 0.2 \
--language "no" \
--task "transcribe" \
--logging_steps 200 \
--save_total_limit 1 \
--max_steps 10000 \
--wer_threshold 5 \
--per_device_train_batch_size 32 \
--per_device_eval_batch_size 32 \
--dataloader_num_workers 8 \
--preprocessing_num_workers 8 \
--ddp_timeout 7200 \
--dtype "bfloat16" \
--attn_implementation "sdpa" \
--output_dir "./" \
--do_train \
--do_eval \
--gradient_checkpointing \
--overwrite_output_dir \
--predict_with_generate \
--freeze_encoder \
--freeze_embed_positions \
--streaming True \
--wandb_project "nb-distil-whisper-large-pytorch" \
--wandb_name "pytorch2_lr3e4_wer5" \
--push_to_hub