pere commited on
Commit
da89aac
1 Parent(s): d590b6d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - nn
4
+ license: apache-2.0
5
+ tags:
6
+ - hf-asr-leaderboard
7
+ - generated_from_trainer
8
+ datasets:
9
+ - mozilla-foundation/common_voice_11_0
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: whisper-small-npsc
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice 11.0
20
+ type: mozilla-foundation/common_voice_11_0
21
+ config: 16K_mp3_bokmaal
22
+ split: train
23
+ args: 16K_mp3_bokmaal
24
+ metrics:
25
+ - name: Wer
26
+ type: wer
27
+ value: 12.925418803583286
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # whisper-small-npsc
34
+
35
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.2028
38
+ - Wer: 12.9254
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 1e-05
58
+ - train_batch_size: 16
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_steps: 500
64
+ - training_steps: 6000
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
70
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|
71
+ | 0.3922 | 0.18 | 500 | 0.3975 | 24.2055 |
72
+ | 0.2893 | 0.36 | 1000 | 0.3139 | 20.1507 |
73
+ | 0.2471 | 0.54 | 1500 | 0.2733 | 17.4449 |
74
+ | 0.2159 | 0.72 | 2000 | 0.2488 | 16.2681 |
75
+ | 0.2195 | 0.89 | 2500 | 0.2304 | 15.0577 |
76
+ | 0.1178 | 1.07 | 3000 | 0.2245 | 14.5968 |
77
+ | 0.1099 | 1.25 | 3500 | 0.2183 | 14.1118 |
78
+ | 0.1059 | 1.43 | 4000 | 0.2136 | 13.7914 |
79
+ | 0.1156 | 1.61 | 4500 | 0.2072 | 13.7491 |
80
+ | 0.1025 | 1.79 | 5000 | 0.2034 | 13.1515 |
81
+ | 0.1123 | 1.97 | 5500 | 0.2006 | 13.0284 |
82
+ | 0.0734 | 2.15 | 6000 | 0.2028 | 12.9254 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.25.0.dev0
88
+ - Pytorch 1.12.1+cu113
89
+ - Datasets 2.6.1
90
+ - Tokenizers 0.13.1