File size: 4,372 Bytes
4f23115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from paddlenlp.utils.serialization import load_torch
import paddle
import safetensors.numpy
import os
import ppdiffusers
from contextlib import contextmanager

@contextmanager
def context_nologging():
    ppdiffusers.utils.logging.set_verbosity_error()
    try:
        yield
    finally:
        ppdiffusers.utils.logging.set_verbosity_info()


__all__ = ['convert_paddle_lora_to_safetensor_lora', 'convert_pytorch_lora_to_paddle_lora']

def convert_paddle_lora_to_safetensor_lora(paddle_file, safe_file=None):
    if not os.path.exists(paddle_file):
        print(f"{paddle_file} 文件不存在!")
        return 
    if safe_file is None:
        safe_file = paddle_file.replace("paddle_lora_weights.pdparams", "pytorch_lora_weights.safetensors")
        
    tensors = paddle.load(paddle_file)
    new_tensors = {}
    for k, v in tensors.items():
        new_tensors[k] = v.cpu().numpy().T
    safetensors.numpy.save_file(new_tensors, safe_file)
    print(f"文件已经保存到{safe_file}!")
    
def convert_pytorch_lora_to_paddle_lora(pytorch_file, paddle_file=None):
    if not os.path.exists(pytorch_file):
        print(f"{pytorch_file} 文件不存在!")
        return 
    if paddle_file is None:
        paddle_file = pytorch_file.replace("pytorch_lora_weights.bin", "paddle_lora_weights.pdparams")
        
    tensors = load_torch(pytorch_file)
    new_tensors = {}
    for k, v in tensors.items():
        new_tensors[k] = v.T
    paddle.save(new_tensors, paddle_file)
    print(f"文件已经保存到{paddle_file}!")



import time
from typing import Optional, Type
import paddle
import requests
from huggingface_hub import create_repo, upload_folder, get_full_repo_name

# Since HF sometimes timeout, we need to retry uploads
# Credit: https://github.com/huggingface/datasets/blob/06ae3f678651bfbb3ca7dd3274ee2f38e0e0237e/src/datasets/utils/file_utils.py#L265
def _retry(
    func,
    func_args: Optional[tuple] = None,
    func_kwargs: Optional[dict] = None,
    exceptions: Type[requests.exceptions.RequestException] = requests.exceptions.RequestException,
    max_retries: int = 0,
    base_wait_time: float = 0.5,
    max_wait_time: float = 2,
):
    func_args = func_args or ()
    func_kwargs = func_kwargs or {}
    retry = 0
    while True:
        try:
            return func(*func_args, **func_kwargs)
        except exceptions as err:
            if retry >= max_retries:
                raise err
            else:
                sleep_time = min(max_wait_time, base_wait_time * 2**retry)  # Exponential backoff
                print(f"{func} timed out, retrying in {sleep_time}s... [{retry/max_retries}]")
                time.sleep(sleep_time)
                retry += 1
                
def upload_lora_folder(upload_dir, repo_name, pretrained_model_name_or_path, prompt, hub_token=None):
    repo_name = get_full_repo_name(repo_name, token=hub_token)
    _retry(
        create_repo,
        func_kwargs={"repo_id": repo_name, "exist_ok": True, "token": hub_token},
        base_wait_time=1.0,
        max_retries=5,
        max_wait_time=10.0,
    )
    save_model_card(
        repo_name,
        base_model=pretrained_model_name_or_path,
        prompt=prompt,
        repo_folder=upload_dir,
    )
    # Upload model
    print(f"Pushing to {repo_name}")
    _retry(
        upload_folder,
        func_kwargs={
            "repo_id": repo_name,
            "repo_type": "model",
            "folder_path": upload_dir,
            "commit_message": "submit best ckpt",
            "token": hub_token,
            "ignore_patterns": ["checkpoint-*/*", "logs/*", "validation_images/*"],
        },
        base_wait_time=1.0,
        max_retries=5,
        max_wait_time=20.0,
        )
    
def save_model_card(repo_name, base_model=str, prompt=str, repo_folder=None):
    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
instance_prompt: {prompt}
tags:
- stable-diffusion
- stable-diffusion-ppdiffusers
- text-to-image
- ppdiffusers
- lora
inference: false
---
    """
    model_card = f"""
# LoRA DreamBooth - {repo_name}
本仓库的 LoRA 权重是基于 {base_model} 训练而来的,我们采用[DreamBooth](https://dreambooth.github.io/)的技术并使用 {prompt} 文本进行了训练。 
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)