--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-88 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- # distilhubert-finetuned-gtzan-88 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6139 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0172 | 1.0 | 112 | 1.8314 | 0.37 | | 1.5433 | 2.0 | 225 | 1.2575 | 0.5 | | 1.1517 | 3.0 | 337 | 0.9577 | 0.7 | | 0.904 | 4.0 | 450 | 0.7582 | 0.77 | | 0.4788 | 5.0 | 562 | 0.7504 | 0.79 | | 0.3843 | 6.0 | 675 | 0.6265 | 0.79 | | 0.3683 | 7.0 | 787 | 0.6683 | 0.8 | | 0.2278 | 8.0 | 900 | 0.8167 | 0.77 | | 0.4534 | 9.0 | 1012 | 0.6023 | 0.83 | | 0.2357 | 10.0 | 1125 | 0.6185 | 0.83 | | 0.3674 | 11.0 | 1237 | 0.6079 | 0.86 | | 0.148 | 11.95 | 1344 | 0.6139 | 0.87 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3