File size: 2,347 Bytes
c8d6e4a e340ea5 c8d6e4a e340ea5 c8d6e4a e340ea5 c8d6e4a 34ce176 c8d6e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-yahd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-yahd
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.7685
- Accuracy: 0.4010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 2.2439 | 1.0 | 9142 | 2.1898 | 0.2130 |
| 1.9235 | 2.0 | 18284 | 2.1045 | 0.2372 |
| 1.5915 | 3.0 | 27426 | 2.1380 | 0.2550 |
| 1.3262 | 4.0 | 36568 | 2.2544 | 0.2758 |
| 1.0529 | 5.0 | 45710 | 2.5662 | 0.2955 |
| 0.8495 | 6.0 | 54852 | 2.8731 | 0.3078 |
| 0.6779 | 7.0 | 63994 | 3.1980 | 0.3218 |
| 0.5546 | 8.0 | 73136 | 3.6289 | 0.3380 |
| 0.4738 | 9.0 | 82278 | 3.9732 | 0.3448 |
| 0.412 | 10.0 | 91420 | 4.2945 | 0.3565 |
| 0.3961 | 11.0 | 100562 | 4.6127 | 0.3772 |
| 0.3292 | 12.0 | 109704 | 4.9586 | 0.3805 |
| 0.318 | 13.0 | 118846 | 5.2615 | 0.3887 |
| 0.2936 | 14.0 | 127988 | 5.4567 | 0.3931 |
| 0.2671 | 15.0 | 137130 | 5.6902 | 0.3965 |
| 0.2301 | 16.0 | 146272 | 5.7685 | 0.4010 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.0+cu102
- Datasets 1.15.1
- Tokenizers 0.10.3
|