File size: 17,428 Bytes
ece90a2
12dd66e
ece90a2
12dd66e
 
ece90a2
12dd66e
 
ece90a2
 
12dd66e
ece90a2
12dd66e
 
 
 
 
 
 
 
ece90a2
12dd66e
 
 
 
 
 
 
 
ece90a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12dd66e
 
ece90a2
 
 
 
12dd66e
ece90a2
 
 
 
12dd66e
 
 
ece90a2
 
 
 
 
 
 
 
12dd66e
ece90a2
 
12dd66e
ece90a2
 
 
 
 
12dd66e
ece90a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12dd66e
 
 
 
ece90a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12dd66e
 
 
 
 
 
 
ece90a2
 
 
12dd66e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece90a2
 
 
 
 
 
 
 
 
12dd66e
 
 
ece90a2
12dd66e
 
 
 
 
ece90a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12dd66e
 
 
 
 
 
 
 
 
 
ece90a2
12dd66e
 
 
 
 
ece90a2
 
 
 
 
 
12dd66e
 
 
ece90a2
 
 
12dd66e
ece90a2
 
12dd66e
ece90a2
12dd66e
 
ece90a2
 
 
 
 
12dd66e
 
 
 
ece90a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12dd66e
 
 
ece90a2
 
12dd66e
 
 
 
 
 
 
 
 
 
 
ece90a2
 
 
12dd66e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import re
import argparse
import json
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.nn import functional as F
from gpt_p.model import DecoderTransformer
from torch.optim.lr_scheduler import _LRScheduler
import math
from datasets import load_dataset
import wandb


torch.manual_seed(420) # 1337

base_name = 'gpt-p_CHARS_CHAT_'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
context_size = 256 # how many tokens to consider while generating the next
batch_size = 128 # how many independent sequences will we process in parallel
max_iters = 50_000
learning_rate = 3e-5
eval_interval = 100
eval_iters = 20 # number evaluation iterations
n_embed = 384 # embedding size
n_layer = 6 # number of transformer layers
n_head = 6
dropout = 0.2 # dropout factor

mask_all_data = True
use_scheduler = False

dataset = load_dataset('Lichess/standard-chess-games', '2014-08', split='train')
og_samples = list(filter(lambda x: 'eval' not in x, dataset['movetext']))


new_dataset = load_dataset('Lichess/standard-chess-games', '2024-07', split='train', data_files=[f'data/year=2024/month=07/train-{str(i).zfill(5)}-of-00384.parquet' for i in range(10)])

new_dataset = [re.sub('[0-9]+\.\.\.', '', re.sub('{[^\}]*}', '', foo)).replace('  ', ' ').replace('  ', ' ') for foo in dataset['movetext']]

og_samples += new_dataset

if mask_all_data:
    content = '\n'.join(list(filter(lambda x: 'eval' not in x, dataset['movetext'])))
else:
    content = og_samples

print('Data loaded')
print('Training on ', len(content), 'characters. Good luck!')

## BUILD DATA SET ##
# load data
#with open('data.txt', 'r') as f:
#    content = f.read()

book = content
if mask_all_data:
    characters = sorted(list(set(book)))
else:
    characters = sorted(list(set('\n'.join(book))))
vocab_size = len(characters)

# convert 
class Tokenizer:
    def __init__(self, vocab):
        self.vocab = vocab
        self.stoi = {ch: idx for idx, ch in enumerate(vocab)}
        self.itos = {idx: ch for idx, ch in enumerate(vocab)}

    def encode(self, s):
        return [self.stoi[c] for c in s]

    def decode(self, i):
        return ''.join([self.itos[x] for x in i])

    @classmethod
    def from_pretrained(cls, path):
        with open(path, 'r') as f:
            vocab = json.load(f)
        return cls(vocab)

    def save_pretrained(self, path):
        with open(path, 'w') as f:
            json.dump(self.vocab, f)


tokenizer = Tokenizer(characters)
encode = tokenizer.encode
decode = tokenizer.decode

if mask_all_data:
    data = torch.tensor(encode(book), dtype=torch.long)
else:
    data = [torch.tensor(encode(s), dtype=torch.long) for s in book]
max_len = max(len(x) for x in og_samples)
context_size = min(context_size, max_len)


n = int(0.8 * len(data))
train_data = data[:n]
val_data = data[n:]



# Constants for piece movement validation
PIECE_VALUES = {
    'P': 1, 'N': 3, 'B': 3, 'R': 5, 'Q': 9, 'K': 0,  # White pieces
    'p': 1, 'n': 3, 'b': 3, 'r': 5, 'q': 9, 'k': 0   # Black pieces
}

def initialize_board():
    """Initializes the standard chessboard setup."""
    return [
        ['r', 'n', 'b', 'q', 'k', 'b', 'n', 'r'],  # 8th rank (Black)
        ['p', 'p', 'p', 'p', 'p', 'p', 'p', 'p'],  # 7th rank (Black)
        ['.', '.', '.', '.', '.', '.', '.', '.'],  # 6th rank
        ['.', '.', '.', '.', '.', '.', '.', '.'],  # 5th rank
        ['.', '.', '.', '.', '.', '.', '.', '.'],  # 4th rank
        ['.', '.', '.', '.', '.', '.', '.', '.'],  # 3rd rank
        ['P', 'P', 'P', 'P', 'P', 'P', 'P', 'P'],  # 2nd rank (White)
        ['R', 'N', 'B', 'Q', 'K', 'B', 'N', 'R']   # 1st rank (White)
    ]

def get_piece(board, position):
    """Returns the piece at a given board position (e.g., e4 -> 'P' or '.')."""
    col = ord(position[0]) - ord('a')
    row = 8 - int(position[1])
    return board[row][col]

def set_piece(board, position, piece):
    """Sets a piece on the board at a given position."""
    col = ord(position[0]) - ord('a')
    row = 8 - int(position[1])
    board[row][col] = piece

def validate_pawn_move(board, start, end, is_white_turn):
    """Validates pawn movement including capturing, advancing, and promotion."""
    start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1])
    end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1])
    
    pawn_direction = -1 if is_white_turn else 1  # White moves up, black moves down
    
    # Regular forward move
    if start_col == end_col and board[end_row][end_col] == '.':
        if start_row + pawn_direction == end_row:  # 1 square move
            return True
        if (is_white_turn and start_row == 6 or not is_white_turn and start_row == 1) and start_row + 2 * pawn_direction == end_row:
            return True
    
    # Capture
    if abs(start_col - end_col) == 1 and start_row + pawn_direction == end_row:
        target_piece = board[end_row][end_col]
        if (is_white_turn and target_piece.islower()) or (not is_white_turn and target_piece.isupper()):
            return True
    
    return False

def validate_knight_move(start, end):
    """Validates knight movement (L-shape)."""
    start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1])
    end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1])
    
    col_diff = abs(start_col - end_col)
    row_diff = abs(start_row - end_row)
    
    return (col_diff == 2 and row_diff == 1) or (col_diff == 1 and row_diff == 2)

def validate_rook_move(board, start, end):
    """Validates rook movement (straight lines along rank or file)."""
    start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1])
    end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1])
    
    if start_col != end_col and start_row != end_row:
        return False  # Must be either same column or row
    
    # Check if path is clear
    if start_col == end_col:
        step = 1 if end_row > start_row else -1
        for row in range(start_row + step, end_row, step):
            if board[row][start_col] != '.':
                return False
    else:
        step = 1 if end_col > start_col else -1
        for col in range(start_col + step, end_col, step):
            if board[start_row][col] != '.':
                return False
    
    return True

def validate_bishop_move(board, start, end):
    """Validates bishop movement (diagonals)."""
    start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1])
    end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1])
    
    if abs(start_col - end_col) != abs(start_row - end_row):
        return False  # Must move diagonally
    
    # Check if path is clear
    col_step = 1 if end_col > start_col else -1
    row_step = 1 if end_row > start_row else -1
    col, row = start_col + col_step, start_row + row_step
    while col != end_col and row != end_row:
        if board[row][col] != '.':
            return False
        col += col_step
        row += row_step
    
    return True

def validate_move(board, move, is_white_turn):
    """Validates a move based on the current board state."""
    if move == "O-O" or move == "O-O-O":
        return True  # Castling placeholder
    
    piece_type = 'P' if move[0].islower() else move[0]
    start = move[-2:]  # Simplification; would need to parse actual source square
    end = move[-2:]  # Actual end position is the destination
    
    if piece_type == 'P':
        return validate_pawn_move(board, start, end, is_white_turn)
    elif piece_type == 'N':
        return validate_knight_move(start, end)
    elif piece_type == 'R':
        return validate_rook_move(board, start, end)
    elif piece_type == 'B':
        return validate_bishop_move(board, start, end)
    
    # Other pieces can be added similarly
    return True  # Placeholder for other pieces

def update_board(board, move, is_white_turn):
    """Updates the board according to the move."""
    start = move[-2:]
    end = move[-2:]
    piece = get_piece(board, start)
    
    # Move the piece
    set_piece(board, end, piece)
    set_piece(board, start, '.')
    
    return board  # Placeholder for now

def validate_pgn(pgn_string):
    """
    Validates the PGN string format and chess move legality.
    """
    
    move_pattern = r'([PNBRQK]?[a-h]?[1-8]?[x]?[a-h][1-8](=[QRNB])?|O-O(-O)?)[+#]?'  # Chess move
    result_pattern = r'(1-0|0-1|1/2-1/2)'  # Game results
    tag_pattern = r'\[([A-Za-z0-9_]+)\s+"([^"]+)"\]'  # PGN tags

    pgn_lines = pgn_string.strip().splitlines()
    
    tags = [line for line in pgn_lines if line.startswith('[')]
    for tag in tags:
        if not re.match(tag_pattern, tag):
            return False  # Invalid tag format
    
    moves_section = ' '.join([line for line in pgn_lines if not line.startswith('[')]).strip()
    
    if not re.search(result_pattern, moves_section):
        return False  # No valid result found
    
    moves_section = re.sub(result_pattern, '', moves_section).strip()

    board = initialize_board()
    is_white_turn = True

    move_tokens = re.split(r'\s|\d+\.', moves_section)
    for token in move_tokens:
        if token:
            if not re.match(move_pattern, token):
                return False  # Invalid move format
            
            if not validate_move(board, token, is_white_turn):
                return False  # Invalid chess move
            
            board = update_board(board, token, is_white_turn)
            is_white_turn = not is_white_turn
    
    return True

# Test case
pgn_string = """
[Event "World Championship"]
[Site "Moscow URS"]
[Date "1985.11.09"]
[Round "16"]
[White "Kasparov, Garry"]
[Black "Karpov, Anatoly"]
[Result "1-0"]

1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 4. Ba4 Nf6 5. O-O Be7 6. Re1 b5 7. Bb3 d6
8. c3 O-O 9. h3 Nb8 10. d4 Nbd7 11. c4 Bb7 12. Nbd2 c6 13. Bc2 Re8 14. b3 Bf8
15. Bb2 Qc7 16. Rc1 Rad8 17. a3 Qb8 18. Bd3 g6 19. Qc2 Nh5 20. g3 Ng7 21. Qb1
exd4 22. Nxd4 c5 23. N4f3 Ne6 24. Bf1 Ne5 25. Qa1 Nxf3+ 26. Nxf3 Qa8 27. b4
Rc8 28. Bd3 Bh6 29. Rc2 Bc6 30. h4 f5 31. exf5 Bxf3 32. fxe6 Bh1 33. Bf1 Qf3
34. Re2 Bg7 35. Kh2 Rc7 36. Bxg7 Rxg7 37. Qf6 bxc4 38. e7 Qxf6 39. exf6 1-0
"""



def get_batch_from_samples(split):
    data = train_data if split == 'train' else val_data
    sample_idx = torch.randint(len(data), (batch_size,))
    inputs = []
    outputs = []
    space = encode(' ')[0]
    for idx in sample_idx:
        sample_size = len(data[idx])
        start = torch.randint(max(sample_size - 2, sample_size - context_size), (1,))
        end = start + context_size
        i1 = data[idx][start:end].tolist()
        i2 = [space] * (context_size - len(i1))
        input_sample = torch.tensor(i1 + i2)
        o1 = data[idx][start+1:end+1].tolist()
        o2 = [space] * (context_size - len(o1))
        output_sample = torch.tensor(o1 + o2)

        inputs.append(input_sample)
        outputs.append(output_sample)

    x = torch.stack(inputs)
    y = torch.stack(outputs)
    return x.to(device), y.to(device)


def get_batch(split):
    data = train_data if split == 'train' else val_data
    idx = torch.randint(len(data) - context_size, (batch_size,))
    x = torch.stack([data[i:i+context_size] for i in idx])
    y = torch.stack([data[i+1:i+context_size+1] for i in idx])
    return x.to(device), y.to(device)

if not mask_all_data:
    get_batch = get_batch_from_samples

## END BUILD DATA SET ##
## MODEL DEFINITION ##

def print_sample(input_value=None):
    if input_value is None:
        input_value = torch.zeros((1,1), dtype=torch.long, device=device)
    print('Validation sample:')
    sample = decode(model.generate(input_value, max_new_tokens=250, context_size=context_size)[0].tolist())
    if '<E>' in sample:
        sample = sample[:sample.find('<E>') + 3]
    print(sample)


@torch.no_grad()
def estimate_loss():
    out = {}
    model.eval()
    for split in ['train', 'val']:
        losses = torch.zeros(eval_iters)
        for k in range(eval_iters):
            X, Y = get_batch(split)
            logits, loss = model(X, Y)
            """
            input_string = X[0].tolist()
            gen = model.generate(X[0].view(1, -1), max_new_tokens=5, context_size=context_size)
            o = tokenizer.decode(gen[0].tolist())
            try:
                valid = int(not validate_pgn(o))
            except Exception:
                valid = 2
            """
            losses[k] = loss.item()
        out[split] = losses.mean()

    input_string = '1. e4 g6 2.'
    print_sample(torch.tensor(encode(input_string), dtype=torch.long, device=device).view((1, len(input_string))))
    model.train()
    return out


class CosineAnnealingScheduler(_LRScheduler):
    def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1):
        """
        Args:
            optimizer (Optimizer): Wrapped optimizer.
            T_max (int): Maximum number of iterations.
            eta_min (float): Minimum learning rate. Default: 0.
            last_epoch (int): The index of last epoch. Default: -1.
        """
        self.T_max = T_max
        self.eta_min = eta_min
        super().__init__(optimizer, last_epoch)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn("To get the last learning rate computed by the scheduler, "
                          "please use `get_last_lr()`.", UserWarning)

        if self.last_epoch == 0:
            return [group['lr'] for group in self.optimizer.param_groups]
        elif self._step_count == 1 and self.last_epoch > 0:
            return [self.eta_min + (base_lr - self.eta_min) *
                    (1 + math.cos((self.last_epoch) * math.pi / self.T_max)) / 2
                    for base_lr in self.base_lrs]
        elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
            return [group['lr'] + (base_lr - self.eta_min) *
                    (1 - math.cos(math.pi / self.T_max)) / 2
                    for base_lr, group in
                    zip(self.base_lrs, self.optimizer.param_groups)]
        return [(1 + math.cos(math.pi * self.last_epoch / self.T_max)) /
                (1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) *
                (group['lr'] - self.eta_min) + self.eta_min
                for group in self.optimizer.param_groups]

if __name__ == "__main__":
    args = argparse.ArgumentParser()
    args.add_argument('--load', '-l', action='store_true', default=False, help='Load model state.')
    args.add_argument('--inference', '-i', action='store_true', default=False, help='Run only inference')
    
    args = args.parse_args()

    params = {'vocab_size': vocab_size, 'n_embed': n_embed, 'context_size': context_size, 'n_layer': n_layer, 'n_head': n_head, 'dropout': dropout}
    if args.load:
        m = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout)
        m.load_state_dict(torch.load(f'./models/{base_name}'))# + ''.join(f'{key}={v}' for key, v in params.items())))
    else:
        m = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout)
    model = m.to(device)

    if args.inference:
        input_string = input('Enter a PGN string: ')
        print_sample(torch.tensor(encode(input_string), dtype=torch.long, device=device).view((1, len(input_string))))
        with open(f'./models/{base_name}_params.json', 'w') as f:
            json.dump(params, f)

        tokenizer.save_pretrained(f'./models/{base_name}_vocab.json')
        exit()
    ## END MODEL ##
    ## START TRAINING ##
    wandb.init(project='chessPT')

    wandb.watch(model)
    optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
    if use_scheduler:
        scheduler = CosineAnnealingScheduler(optimizer, max_iters, eta_min=learning_rate//1e6)

    for step in tqdm(range(max_iters), total=max_iters, desc='Training'):
        if step % eval_interval == 0:
            losses = estimate_loss()
            if use_scheduler:
                print(f'step {step:4d}: train loss {losses["train"]:.4f}, val loss: {losses["val"]:.4f}, lr: {scheduler.get_last_lr()[0]}')
            else:
                print(f'step {step:4d}: train loss {losses["train"]:.4f}, val loss: {losses["val"]:.4f}')
            wandb.log({'train_loss': losses['train'], 'val_loss': losses['val']})

        xb, yb = get_batch('train')

        logits, loss = model(xb, yb)
        """

        input_string = xb[0].tolist()
        gen = model.generate(xb[0].view(1, -1), max_new_tokens=5, context_size=context_size)
        out = tokenizer.decode(gen[0].tolist())
        try:
            valid = int(not validate_pgn(out))
        except Exception:
            valid = 2
        loss += valid
        """

        if use_scheduler:
            wandb.log({'running_train_loss': loss.item(), 'lr': scheduler.get_last_lr()[0]})
        else:
            wandb.log({'running_train_loss': loss.item()})

        optimizer.zero_grad(set_to_none=True)
        loss.backward()
        optimizer.step()
        if use_scheduler:
            scheduler.step()

    print()
    print('Loss:')
    print(loss.item())

    ## END TRAINING ##
    ## START VALIDATION ##

    ## END VALIDATION ##

    # save model weights
    torch.save(model.state_dict(), f'./models/{base_name}')
    with open(f'./models/{base_name}_params.json', 'w') as f:
        json.dump(params, f)
    with open('train.log', 'a') as f:
        f.write(f'{max_iters},{learning_rate}\n')