import re import argparse import json import torch import torch.nn as nn from tqdm import tqdm from torch.nn import functional as F from gpt_p.model import DecoderTransformer from torch.optim.lr_scheduler import _LRScheduler import math from datasets import load_dataset import wandb torch.manual_seed(420) # 1337 base_name = 'gpt-p_CHARS_CHAT_' device = 'cuda' if torch.cuda.is_available() else 'cpu' context_size = 256 # how many tokens to consider while generating the next batch_size = 128 # how many independent sequences will we process in parallel max_iters = 50_000 learning_rate = 3e-5 eval_interval = 100 eval_iters = 20 # number evaluation iterations n_embed = 384 # embedding size n_layer = 6 # number of transformer layers n_head = 6 dropout = 0.2 # dropout factor mask_all_data = True use_scheduler = False dataset = load_dataset('Lichess/standard-chess-games', '2014-08', split='train') og_samples = list(filter(lambda x: 'eval' not in x, dataset['movetext'])) new_dataset = load_dataset('Lichess/standard-chess-games', '2024-07', split='train', data_files=[f'data/year=2024/month=07/train-{str(i).zfill(5)}-of-00384.parquet' for i in range(10)]) new_dataset = [re.sub('[0-9]+\.\.\.', '', re.sub('{[^\}]*}', '', foo)).replace(' ', ' ').replace(' ', ' ') for foo in dataset['movetext']] og_samples += new_dataset if mask_all_data: content = '\n'.join(list(filter(lambda x: 'eval' not in x, dataset['movetext']))) else: content = og_samples print('Data loaded') print('Training on ', len(content), 'characters. Good luck!') ## BUILD DATA SET ## # load data #with open('data.txt', 'r') as f: # content = f.read() book = content if mask_all_data: characters = sorted(list(set(book))) else: characters = sorted(list(set('\n'.join(book)))) vocab_size = len(characters) # convert class Tokenizer: def __init__(self, vocab): self.vocab = vocab self.stoi = {ch: idx for idx, ch in enumerate(vocab)} self.itos = {idx: ch for idx, ch in enumerate(vocab)} def encode(self, s): return [self.stoi[c] for c in s] def decode(self, i): return ''.join([self.itos[x] for x in i]) @classmethod def from_pretrained(cls, path): with open(path, 'r') as f: vocab = json.load(f) return cls(vocab) def save_pretrained(self, path): with open(path, 'w') as f: json.dump(self.vocab, f) tokenizer = Tokenizer(characters) encode = tokenizer.encode decode = tokenizer.decode if mask_all_data: data = torch.tensor(encode(book), dtype=torch.long) else: data = [torch.tensor(encode(s), dtype=torch.long) for s in book] max_len = max(len(x) for x in og_samples) context_size = min(context_size, max_len) n = int(0.8 * len(data)) train_data = data[:n] val_data = data[n:] # Constants for piece movement validation PIECE_VALUES = { 'P': 1, 'N': 3, 'B': 3, 'R': 5, 'Q': 9, 'K': 0, # White pieces 'p': 1, 'n': 3, 'b': 3, 'r': 5, 'q': 9, 'k': 0 # Black pieces } def initialize_board(): """Initializes the standard chessboard setup.""" return [ ['r', 'n', 'b', 'q', 'k', 'b', 'n', 'r'], # 8th rank (Black) ['p', 'p', 'p', 'p', 'p', 'p', 'p', 'p'], # 7th rank (Black) ['.', '.', '.', '.', '.', '.', '.', '.'], # 6th rank ['.', '.', '.', '.', '.', '.', '.', '.'], # 5th rank ['.', '.', '.', '.', '.', '.', '.', '.'], # 4th rank ['.', '.', '.', '.', '.', '.', '.', '.'], # 3rd rank ['P', 'P', 'P', 'P', 'P', 'P', 'P', 'P'], # 2nd rank (White) ['R', 'N', 'B', 'Q', 'K', 'B', 'N', 'R'] # 1st rank (White) ] def get_piece(board, position): """Returns the piece at a given board position (e.g., e4 -> 'P' or '.').""" col = ord(position[0]) - ord('a') row = 8 - int(position[1]) return board[row][col] def set_piece(board, position, piece): """Sets a piece on the board at a given position.""" col = ord(position[0]) - ord('a') row = 8 - int(position[1]) board[row][col] = piece def validate_pawn_move(board, start, end, is_white_turn): """Validates pawn movement including capturing, advancing, and promotion.""" start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1]) end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1]) pawn_direction = -1 if is_white_turn else 1 # White moves up, black moves down # Regular forward move if start_col == end_col and board[end_row][end_col] == '.': if start_row + pawn_direction == end_row: # 1 square move return True if (is_white_turn and start_row == 6 or not is_white_turn and start_row == 1) and start_row + 2 * pawn_direction == end_row: return True # Capture if abs(start_col - end_col) == 1 and start_row + pawn_direction == end_row: target_piece = board[end_row][end_col] if (is_white_turn and target_piece.islower()) or (not is_white_turn and target_piece.isupper()): return True return False def validate_knight_move(start, end): """Validates knight movement (L-shape).""" start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1]) end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1]) col_diff = abs(start_col - end_col) row_diff = abs(start_row - end_row) return (col_diff == 2 and row_diff == 1) or (col_diff == 1 and row_diff == 2) def validate_rook_move(board, start, end): """Validates rook movement (straight lines along rank or file).""" start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1]) end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1]) if start_col != end_col and start_row != end_row: return False # Must be either same column or row # Check if path is clear if start_col == end_col: step = 1 if end_row > start_row else -1 for row in range(start_row + step, end_row, step): if board[row][start_col] != '.': return False else: step = 1 if end_col > start_col else -1 for col in range(start_col + step, end_col, step): if board[start_row][col] != '.': return False return True def validate_bishop_move(board, start, end): """Validates bishop movement (diagonals).""" start_col, start_row = ord(start[0]) - ord('a'), 8 - int(start[1]) end_col, end_row = ord(end[0]) - ord('a'), 8 - int(end[1]) if abs(start_col - end_col) != abs(start_row - end_row): return False # Must move diagonally # Check if path is clear col_step = 1 if end_col > start_col else -1 row_step = 1 if end_row > start_row else -1 col, row = start_col + col_step, start_row + row_step while col != end_col and row != end_row: if board[row][col] != '.': return False col += col_step row += row_step return True def validate_move(board, move, is_white_turn): """Validates a move based on the current board state.""" if move == "O-O" or move == "O-O-O": return True # Castling placeholder piece_type = 'P' if move[0].islower() else move[0] start = move[-2:] # Simplification; would need to parse actual source square end = move[-2:] # Actual end position is the destination if piece_type == 'P': return validate_pawn_move(board, start, end, is_white_turn) elif piece_type == 'N': return validate_knight_move(start, end) elif piece_type == 'R': return validate_rook_move(board, start, end) elif piece_type == 'B': return validate_bishop_move(board, start, end) # Other pieces can be added similarly return True # Placeholder for other pieces def update_board(board, move, is_white_turn): """Updates the board according to the move.""" start = move[-2:] end = move[-2:] piece = get_piece(board, start) # Move the piece set_piece(board, end, piece) set_piece(board, start, '.') return board # Placeholder for now def validate_pgn(pgn_string): """ Validates the PGN string format and chess move legality. """ move_pattern = r'([PNBRQK]?[a-h]?[1-8]?[x]?[a-h][1-8](=[QRNB])?|O-O(-O)?)[+#]?' # Chess move result_pattern = r'(1-0|0-1|1/2-1/2)' # Game results tag_pattern = r'\[([A-Za-z0-9_]+)\s+"([^"]+)"\]' # PGN tags pgn_lines = pgn_string.strip().splitlines() tags = [line for line in pgn_lines if line.startswith('[')] for tag in tags: if not re.match(tag_pattern, tag): return False # Invalid tag format moves_section = ' '.join([line for line in pgn_lines if not line.startswith('[')]).strip() if not re.search(result_pattern, moves_section): return False # No valid result found moves_section = re.sub(result_pattern, '', moves_section).strip() board = initialize_board() is_white_turn = True move_tokens = re.split(r'\s|\d+\.', moves_section) for token in move_tokens: if token: if not re.match(move_pattern, token): return False # Invalid move format if not validate_move(board, token, is_white_turn): return False # Invalid chess move board = update_board(board, token, is_white_turn) is_white_turn = not is_white_turn return True # Test case pgn_string = """ [Event "World Championship"] [Site "Moscow URS"] [Date "1985.11.09"] [Round "16"] [White "Kasparov, Garry"] [Black "Karpov, Anatoly"] [Result "1-0"] 1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 4. Ba4 Nf6 5. O-O Be7 6. Re1 b5 7. Bb3 d6 8. c3 O-O 9. h3 Nb8 10. d4 Nbd7 11. c4 Bb7 12. Nbd2 c6 13. Bc2 Re8 14. b3 Bf8 15. Bb2 Qc7 16. Rc1 Rad8 17. a3 Qb8 18. Bd3 g6 19. Qc2 Nh5 20. g3 Ng7 21. Qb1 exd4 22. Nxd4 c5 23. N4f3 Ne6 24. Bf1 Ne5 25. Qa1 Nxf3+ 26. Nxf3 Qa8 27. b4 Rc8 28. Bd3 Bh6 29. Rc2 Bc6 30. h4 f5 31. exf5 Bxf3 32. fxe6 Bh1 33. Bf1 Qf3 34. Re2 Bg7 35. Kh2 Rc7 36. Bxg7 Rxg7 37. Qf6 bxc4 38. e7 Qxf6 39. exf6 1-0 """ def get_batch_from_samples(split): data = train_data if split == 'train' else val_data sample_idx = torch.randint(len(data), (batch_size,)) inputs = [] outputs = [] space = encode(' ')[0] for idx in sample_idx: sample_size = len(data[idx]) start = torch.randint(max(sample_size - 2, sample_size - context_size), (1,)) end = start + context_size i1 = data[idx][start:end].tolist() i2 = [space] * (context_size - len(i1)) input_sample = torch.tensor(i1 + i2) o1 = data[idx][start+1:end+1].tolist() o2 = [space] * (context_size - len(o1)) output_sample = torch.tensor(o1 + o2) inputs.append(input_sample) outputs.append(output_sample) x = torch.stack(inputs) y = torch.stack(outputs) return x.to(device), y.to(device) def get_batch(split): data = train_data if split == 'train' else val_data idx = torch.randint(len(data) - context_size, (batch_size,)) x = torch.stack([data[i:i+context_size] for i in idx]) y = torch.stack([data[i+1:i+context_size+1] for i in idx]) return x.to(device), y.to(device) if not mask_all_data: get_batch = get_batch_from_samples ## END BUILD DATA SET ## ## MODEL DEFINITION ## def print_sample(input_value=None): if input_value is None: input_value = torch.zeros((1,1), dtype=torch.long, device=device) print('Validation sample:') sample = decode(model.generate(input_value, max_new_tokens=250, context_size=context_size)[0].tolist()) if '' in sample: sample = sample[:sample.find('') + 3] print(sample) @torch.no_grad() def estimate_loss(): out = {} model.eval() for split in ['train', 'val']: losses = torch.zeros(eval_iters) for k in range(eval_iters): X, Y = get_batch(split) logits, loss = model(X, Y) """ input_string = X[0].tolist() gen = model.generate(X[0].view(1, -1), max_new_tokens=5, context_size=context_size) o = tokenizer.decode(gen[0].tolist()) try: valid = int(not validate_pgn(o)) except Exception: valid = 2 """ losses[k] = loss.item() out[split] = losses.mean() input_string = '1. e4 g6 2.' print_sample(torch.tensor(encode(input_string), dtype=torch.long, device=device).view((1, len(input_string)))) model.train() return out class CosineAnnealingScheduler(_LRScheduler): def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1): """ Args: optimizer (Optimizer): Wrapped optimizer. T_max (int): Maximum number of iterations. eta_min (float): Minimum learning rate. Default: 0. last_epoch (int): The index of last epoch. Default: -1. """ self.T_max = T_max self.eta_min = eta_min super().__init__(optimizer, last_epoch) def get_lr(self): if not self._get_lr_called_within_step: warnings.warn("To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning) if self.last_epoch == 0: return [group['lr'] for group in self.optimizer.param_groups] elif self._step_count == 1 and self.last_epoch > 0: return [self.eta_min + (base_lr - self.eta_min) * (1 + math.cos((self.last_epoch) * math.pi / self.T_max)) / 2 for base_lr in self.base_lrs] elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0: return [group['lr'] + (base_lr - self.eta_min) * (1 - math.cos(math.pi / self.T_max)) / 2 for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)] return [(1 + math.cos(math.pi * self.last_epoch / self.T_max)) / (1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) * (group['lr'] - self.eta_min) + self.eta_min for group in self.optimizer.param_groups] if __name__ == "__main__": args = argparse.ArgumentParser() args.add_argument('--load', '-l', action='store_true', default=False, help='Load model state.') args.add_argument('--inference', '-i', action='store_true', default=False, help='Run only inference') args = args.parse_args() params = {'vocab_size': vocab_size, 'n_embed': n_embed, 'context_size': context_size, 'n_layer': n_layer, 'n_head': n_head, 'dropout': dropout} if args.load: m = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout) m.load_state_dict(torch.load(f'./models/{base_name}'))# + ''.join(f'{key}={v}' for key, v in params.items()))) else: m = DecoderTransformer(vocab_size, n_embed, context_size, n_layer, n_head, dropout) model = m.to(device) if args.inference: input_string = input('Enter a PGN string: ') print_sample(torch.tensor(encode(input_string), dtype=torch.long, device=device).view((1, len(input_string)))) with open(f'./models/{base_name}_params.json', 'w') as f: json.dump(params, f) tokenizer.save_pretrained(f'./models/{base_name}_vocab.json') exit() ## END MODEL ## ## START TRAINING ## wandb.init(project='chessPT') wandb.watch(model) optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) if use_scheduler: scheduler = CosineAnnealingScheduler(optimizer, max_iters, eta_min=learning_rate//1e6) for step in tqdm(range(max_iters), total=max_iters, desc='Training'): if step % eval_interval == 0: losses = estimate_loss() if use_scheduler: print(f'step {step:4d}: train loss {losses["train"]:.4f}, val loss: {losses["val"]:.4f}, lr: {scheduler.get_last_lr()[0]}') else: print(f'step {step:4d}: train loss {losses["train"]:.4f}, val loss: {losses["val"]:.4f}') wandb.log({'train_loss': losses['train'], 'val_loss': losses['val']}) xb, yb = get_batch('train') logits, loss = model(xb, yb) """ input_string = xb[0].tolist() gen = model.generate(xb[0].view(1, -1), max_new_tokens=5, context_size=context_size) out = tokenizer.decode(gen[0].tolist()) try: valid = int(not validate_pgn(out)) except Exception: valid = 2 loss += valid """ if use_scheduler: wandb.log({'running_train_loss': loss.item(), 'lr': scheduler.get_last_lr()[0]}) else: wandb.log({'running_train_loss': loss.item()}) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() if use_scheduler: scheduler.step() print() print('Loss:') print(loss.item()) ## END TRAINING ## ## START VALIDATION ## ## END VALIDATION ## # save model weights torch.save(model.state_dict(), f'./models/{base_name}') with open(f'./models/{base_name}_params.json', 'w') as f: json.dump(params, f) with open('train.log', 'a') as f: f.write(f'{max_iters},{learning_rate}\n')