--- tags: - trocr - image-to-text - endpoints-template library_name: generic --- # Fork of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) for an `OCR` Inference endpoint. This repository implements a `custom` task for `ocr-detection` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/trocr-base-printed/blob/main/pipeline.py). To use deploy this model as an Inference Endpoint, you have to select `Custom` as the task to use the `pipeline.py` file. -> _double check if it is selected_ ## Run Request The endpoint expects the image to be served as `binary`. Below is an curl and python example #### cURL 1. get image ```bash wget https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg -O test.jpg ``` 2. send cURL request ```bash curl --request POST \ --url https://{ENDPOINT}/ \ --header 'Content-Type: image/jpg' \ --header 'Authorization: Bearer {HF_TOKEN}' \ --data-binary '@test.jpg' ``` 3. the expected output ```json {"text": "INDLUS THE"} ``` #### Python 1. get image ```bash wget https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg -O test.jpg ``` 2. run request ```python import json from typing import List import requests as r import base64 ENDPOINT_URL="" HF_TOKEN="" def predict(path_to_image:str=None): with open(path_to_image, "rb") as i: b = i.read() headers= { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": "image/jpeg" # content type of image } response = r.post(ENDPOINT_URL, headers=headers, data=b) return response.json() prediction = predict(path_to_image="test.jpg") prediction ``` expected output ```python {"text": "INDLUS THE"} ```