KarlP commited on
Commit
fef8e13
·
verified ·
1 Parent(s): ef02bab

Upload processor

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
processing_action_tokenizer.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import ClassVar
3
+
4
+ import numpy as np
5
+ from scipy.fft import dct
6
+ from scipy.fft import idct
7
+ from tokenizers import ByteLevelBPETokenizer
8
+ from tokenizers.trainers import BpeTrainer
9
+ from transformers import PreTrainedTokenizerFast
10
+ from transformers.processing_utils import ProcessorMixin
11
+
12
+
13
+ class UniversalActionProcessor(ProcessorMixin):
14
+ attributes: ClassVar[list[str]] = ["bpe_tokenizer"]
15
+ bpe_tokenizer_class: str = "AutoTokenizer"
16
+
17
+ def __init__(
18
+ self,
19
+ bpe_tokenizer: PreTrainedTokenizerFast,
20
+ scale: float = 10,
21
+ vocab_size: int = 1024,
22
+ min_token: int = 0,
23
+ *,
24
+ action_dim: int | None = None,
25
+ time_horizon: int | None = None,
26
+ ):
27
+ self.scale = scale
28
+ self.vocab_size = vocab_size
29
+ self.min_token = min_token
30
+
31
+ # Action horizon and dimension needed during decoding. These can be specified
32
+ # in three ways (in order of priority):
33
+ # 1. passed in as kwargs to decode()
34
+ # 2. in the constructor
35
+ # 3. cached from the last time decode() was called
36
+ self.time_horizon = time_horizon
37
+ self.action_dim = action_dim
38
+ self.called_time_horizon = time_horizon
39
+ self.called_action_dim = action_dim
40
+
41
+ super().__init__(bpe_tokenizer)
42
+
43
+ def __call__(self, action_chunk: np.array) -> np.array:
44
+ assert action_chunk.ndim <= 3, "Only 3 dimensions supported: [batch, timesteps, action_dim]"
45
+ if action_chunk.ndim == 2:
46
+ action_chunk = action_chunk[None, ...]
47
+
48
+ # Cache the time horizon and action dimension for decoding
49
+ self.called_time_horizon = action_chunk.shape[-2]
50
+ self.called_action_dim = action_chunk.shape[-1]
51
+
52
+ dct_coeff = dct(action_chunk, axis=1, norm="ortho")
53
+ dct_coeff = np.around(dct_coeff * self.scale)
54
+ tokens = []
55
+ for elem in dct_coeff:
56
+ token_str = "".join(map(chr, np.maximum(elem.flatten() - self.min_token, 0).astype(int)))
57
+ tokens.append(self.bpe_tokenizer(token_str)["input_ids"])
58
+ return tokens
59
+
60
+ def decode(
61
+ self,
62
+ tokens: list[list[int]],
63
+ *,
64
+ time_horizon: int | None = None,
65
+ action_dim: int | None = None,
66
+ ) -> np.array:
67
+ self.time_horizon = time_horizon or self.time_horizon or self.called_time_horizon
68
+ self.action_dim = action_dim or self.action_dim or self.called_action_dim
69
+
70
+ # Cache the time horizon and action dimension for the next call
71
+ self.called_time_horizon = self.time_horizon
72
+ self.called_action_dim = self.action_dim
73
+
74
+ assert (
75
+ self.time_horizon is not None and self.action_dim is not None
76
+ ), "Tokenizer not initialized, call encode() once or pass in time_horizon and action_dim."
77
+
78
+ decoded_actions = []
79
+ for token in tokens:
80
+ try:
81
+ decoded_tokens = self.bpe_tokenizer.decode(token)
82
+ decoded_dct_coeff = np.array(list(map(ord, decoded_tokens))) + self.min_token
83
+ decoded_dct_coeff = decoded_dct_coeff.reshape(-1, self.action_dim)
84
+ assert (
85
+ decoded_dct_coeff.shape
86
+ == (
87
+ self.time_horizon,
88
+ self.action_dim,
89
+ )
90
+ ), f"Decoded DCT coefficients have shape {decoded_dct_coeff.shape}, expected ({self.time_horizon}, {self.action_dim})"
91
+ except Exception as e:
92
+ print(f"Error decoding tokens: {e}")
93
+ print(f"Tokens: {token}")
94
+ decoded_dct_coeff = np.zeros((self.time_horizon, self.action_dim))
95
+ decoded_actions.append(idct(decoded_dct_coeff / self.scale, axis=0, norm="ortho"))
96
+ return np.stack(decoded_actions)
97
+
98
+ @classmethod
99
+ def fit(
100
+ cls,
101
+ action_data: list[np.array],
102
+ scale: float = 10,
103
+ vocab_size: int = 1024,
104
+ *,
105
+ time_horizon: int | None = None,
106
+ action_dim: int | None = None,
107
+ ) -> "UniversalActionProcessor":
108
+ # Run DCT over all inputs
109
+ dct_tokens = [dct(a, axis=0, norm="ortho").flatten() for a in action_data]
110
+
111
+ # Quantize and find min token
112
+ max_token = int(np.around(np.concatenate(dct_tokens) * scale).max())
113
+ min_token = int(np.around(np.concatenate(dct_tokens) * scale).min())
114
+ min_vocab_size = max_token - min_token
115
+
116
+ assert (
117
+ min_vocab_size <= vocab_size
118
+ ), f"Vocab size {vocab_size} is too small for the range of tokens {min_vocab_size}"
119
+ if min_vocab_size + 100 > vocab_size:
120
+ logging.warning(
121
+ f"Initial alphabet size {min_vocab_size} is almost as large as the vocab"
122
+ f"size {vocab_size}, consider increasing vocab size"
123
+ )
124
+
125
+ # Make token iterator for BPE training
126
+ def _token_iter():
127
+ for tokens in dct_tokens:
128
+ rounded_tokens = np.around(tokens * scale) - min_token
129
+ rounded_tokens = rounded_tokens.astype(int)
130
+ string = "".join(map(chr, rounded_tokens))
131
+ yield string
132
+
133
+ # Train BPE tokenizer
134
+ bpe = ByteLevelBPETokenizer()
135
+
136
+ # Set up the entire range of possible tokens as the initial alphabet
137
+ alphabet = [chr(i) for i in range(max_token - min_token + 1)]
138
+ trainer = BpeTrainer(
139
+ vocab_size=vocab_size,
140
+ min_frequency=2,
141
+ show_progress=True,
142
+ special_tokens=[],
143
+ initial_alphabet=alphabet,
144
+ max_token_length=10000,
145
+ )
146
+
147
+ # Train the inner tokenizer (don't use ByteLevelBPETokenizer.train_from_iterator()
148
+ # because it doesn't support custom alphabets)
149
+ bpe._tokenizer.train_from_iterator(_token_iter(), trainer=trainer)
150
+
151
+ return cls(
152
+ PreTrainedTokenizerFast(tokenizer_object=bpe, clean_up_tokenization_spaces=False),
153
+ scale=scale,
154
+ vocab_size=vocab_size,
155
+ min_token=min_token,
156
+ time_horizon=time_horizon,
157
+ action_dim=action_dim,
158
+ )
processor_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "action_dim": null,
3
+ "auto_map": {
4
+ "AutoProcessor": "processing_action_tokenizer.UniversalActionProcessor"
5
+ },
6
+ "min_token": -354,
7
+ "processor_class": "UniversalActionProcessor",
8
+ "scale": 10,
9
+ "time_horizon": null,
10
+ "vocab_size": 2048
11
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoProcessor": "processing_action_tokenizer.UniversalActionProcessor"
5
+ },
6
+ "clean_up_tokenization_spaces": true,
7
+ "model_max_length": 1000000000000000019884624838656,
8
+ "processor_class": "UniversalActionProcessor",
9
+ "tokenizer_class": "PreTrainedTokenizerFast"
10
+ }