File size: 2,016 Bytes
a5b1eaf
2141229
dc81f9f
a5b1eaf
 
 
dc81f9f
a5b1eaf
 
 
 
 
 
dc81f9f
a5b1eaf
dc81f9f
a5b1eaf
dc81f9f
a5b1eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc81f9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b1eaf
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
base_model: pilotj/distilbert-base-uncased-fibe-v8-finetuned
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-fibe-v9-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-fibe-v9-finetuned

This model is a fine-tuned version of [pilotj/distilbert-base-uncased-fibe-v8-finetuned](https://huggingface.co/pilotj/distilbert-base-uncased-fibe-v8-finetuned) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8968

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.5704        | 0.0779 | 1000  | 1.0604          |
| 0.5614        | 0.1558 | 2000  | 1.1759          |
| 0.5481        | 0.2338 | 3000  | 1.0633          |
| 0.5417        | 0.3117 | 4000  | 1.0108          |
| 0.5257        | 0.3896 | 5000  | 0.9514          |
| 0.5106        | 0.4675 | 6000  | 0.9228          |
| 0.492         | 0.5455 | 7000  | 0.9493          |
| 0.5033        | 0.6234 | 8000  | 0.9060          |
| 0.4688        | 0.7013 | 9000  | 0.8691          |
| 0.483         | 0.7792 | 10000 | 0.8291          |
| 0.4679        | 0.8572 | 11000 | 0.8628          |
| 0.4368        | 0.9351 | 12000 | 0.8968          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1