File size: 2,016 Bytes
a5b1eaf 2141229 dc81f9f a5b1eaf dc81f9f a5b1eaf dc81f9f a5b1eaf dc81f9f a5b1eaf dc81f9f a5b1eaf dc81f9f a5b1eaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: transformers
base_model: pilotj/distilbert-base-uncased-fibe-v8-finetuned
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-fibe-v9-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-fibe-v9-finetuned
This model is a fine-tuned version of [pilotj/distilbert-base-uncased-fibe-v8-finetuned](https://huggingface.co/pilotj/distilbert-base-uncased-fibe-v8-finetuned) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8968
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.5704 | 0.0779 | 1000 | 1.0604 |
| 0.5614 | 0.1558 | 2000 | 1.1759 |
| 0.5481 | 0.2338 | 3000 | 1.0633 |
| 0.5417 | 0.3117 | 4000 | 1.0108 |
| 0.5257 | 0.3896 | 5000 | 0.9514 |
| 0.5106 | 0.4675 | 6000 | 0.9228 |
| 0.492 | 0.5455 | 7000 | 0.9493 |
| 0.5033 | 0.6234 | 8000 | 0.9060 |
| 0.4688 | 0.7013 | 9000 | 0.8691 |
| 0.483 | 0.7792 | 10000 | 0.8291 |
| 0.4679 | 0.8572 | 11000 | 0.8628 |
| 0.4368 | 0.9351 | 12000 | 0.8968 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1
|