--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: OR_finetuned_classification results: [] --- # OR_finetuned_classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6007 - F1: 0.6667 - Roc Auc: 0.8095 - Accuracy: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.0016 | 79.0 | 790 | 0.4859 | 0.6667 | 0.8095 | 0.6667 | | 0.0006 | 158.0 | 1580 | 0.5649 | 0.6667 | 0.8095 | 0.6667 | | 0.0004 | 237.0 | 2370 | 0.6007 | 0.6667 | 0.8095 | 0.6667 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1