--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-xls-r-1b-ja-phoneme_cv_14_2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train[:50%] args: default metrics: - name: Wer type: wer value: 0.06680282124961409 --- # wav2vec2-xls-r-1b-ja-phoneme_cv_14_2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2898 - Wer: 0.0668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0171 | 0.49 | 2000 | 0.3758 | 0.0890 | | 0.3467 | 0.98 | 4000 | 0.2898 | 0.0668 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3