File size: 2,014 Bytes
57cf9e7 bd0b527 57cf9e7 bd0b527 57cf9e7 3157a23 57cf9e7 2d51696 c69a9c1 8f309e6 8fee06f 91cf863 a21d5d8 744e836 18ec461 29c3129 ff83e8e 072222d 373efea ed8d1c1 0d03b4d e90aba8 291907c 3157a23 57cf9e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: distilgpt2
tags:
- generated_from_keras_callback
model-index:
- name: pippinnie/distilgpt2-finetuned-cyber-readme-v2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# pippinnie/distilgpt2-finetuned-cyber-readme-v2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.8862
- Validation Loss: 3.1404
- Epoch: 16
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 4.1088 | 3.9258 | 0 |
| 3.9271 | 3.7983 | 1 |
| 3.7845 | 3.6781 | 2 |
| 3.6677 | 3.6006 | 3 |
| 3.5681 | 3.5272 | 4 |
| 3.4803 | 3.4643 | 5 |
| 3.4027 | 3.4068 | 6 |
| 3.3316 | 3.3671 | 7 |
| 3.2666 | 3.3179 | 8 |
| 3.2072 | 3.2817 | 9 |
| 3.1517 | 3.2565 | 10 |
| 3.1007 | 3.2283 | 11 |
| 3.0527 | 3.2051 | 12 |
| 3.0079 | 3.1826 | 13 |
| 2.9651 | 3.1590 | 14 |
| 2.9245 | 3.1529 | 15 |
| 2.8862 | 3.1404 | 16 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.16.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|