File size: 1,809 Bytes
0cb9634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b507344
 
 
 
 
0cb9634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cc5912
8f37615
b507344
0cb9634
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: apache-2.0
base_model: distilroberta-base
tags:
- generated_from_keras_callback
model-index:
- name: pippinnie/distilroberta-base-finetuned-cyber-readme-v2
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# pippinnie/distilroberta-base-finetuned-cyber-readme-v2

This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.6160
- Train Accuracy: 0.0831
- Validation Loss: 2.2778
- Validation Accuracy: 0.0909
- Epoch: 3

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 2.9763     | 0.0766         | 2.5856          | 0.0839              | 0     |
| 2.8159     | 0.0795         | 2.4501          | 0.0871              | 1     |
| 2.7022     | 0.0816         | 2.3638          | 0.0892              | 2     |
| 2.6160     | 0.0831         | 2.2778          | 0.0909              | 3     |


### Framework versions

- Transformers 4.38.2
- TensorFlow 2.16.1
- Datasets 2.18.0
- Tokenizers 0.15.2