--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:10501 - loss:CosineSimilarityLoss base_model: klue/roberta-base widget: - source_sentence: 아침마다 제가 원하는 시간에 맛있는 조식도 먹을 수 있었어요. sentences: - 매일 아침 내가 원하는 시간에 맛있는 아침식사를 먹을 수 있었습니다. - 태풍과 폭염 중 어떤 것이 올까요? - 떼르미니 역에서 5분 이내고 주변에 마트 식당 빵집 등등 편의시설도 가득합니다. - source_sentence: 아무리 우수한 방역체계도 신뢰 없이는 작동하기 어렵습니다. sentences: - 좋은 위치와 좋은 숙소와 좋은 호스트가 있습니다. - 위치도 룸도 모든 기 완벽한 곳이었다! - 콜센터 시설 내외부 방역도 철저히 실시하기로 했다. - source_sentence: 굳이 모든 메일을 다 가지고 있을 필요는 없어. 중요하지 않은 학회 홍보 메일은 지워도 돼. sentences: - 바르셀로나에 가실 거면 시내에 안 계셔도 된다면 이 숙소를 추천해 드릴게요! - 학교에서 온 메일 말고 학회 홍보메일만 삭제해줘 - 사그라다 파밀리아까지는 걸어서 10분거리구요. - source_sentence: 더운물로 세탁하자. sentences: - 네가 시간 떼울 때 보고싶은 오락 프로그램 이름 알려주면 찾아볼께 - 장인어른과의 약속에 정시에 가지 말고 일찍 나오세요. - 안방 취침등 또는 형광등은 어떻게 켜? - source_sentence: 또한 숙소는 청결하고 아늑한 장소입니다. sentences: - 또한, 숙소는 깨끗하고 아늑한 곳입니다. - 깜빡하고 백화점 세일 일정 잊어버리면 안된다. - 전체적으로 집 내부가 너무 예뻤어요. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine co2_eq_emissions: emissions: 6.29574616666927 energy_consumed: 0.014386922744112848 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: Intel(R) Core(TM) i7-14700KF ram_total_size: 63.83439254760742 hours_used: 0.044 hardware_used: 1 x NVIDIA GeForce RTX 4090 model-index: - name: SentenceTransformer based on klue/roberta-base results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: Unknown type: unknown metrics: - type: pearson_cosine value: 0.3477070403258199 name: Pearson Cosine - type: spearman_cosine value: 0.35560473197486514 name: Spearman Cosine - type: pearson_cosine value: 0.9624051736790307 name: Pearson Cosine - type: spearman_cosine value: 0.922152297127282 name: Spearman Cosine --- # SentenceTransformer based on klue/roberta-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ '또한 숙소는 청결하고 아늑한 장소입니다.', '또한, 숙소는 깨끗하고 아늑한 곳입니다.', '깜빡하고 백화점 세일 일정 잊어버리면 안된다.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.3477 | | **spearman_cosine** | **0.3556** | #### Semantic Similarity * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.9624 | | **spearman_cosine** | **0.9222** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 10,501 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:----------------------------------------------------------------|:-------------------------------------------------------------|:------------------| | 아울러, 4월 9일부터 5월말까지 EBS 교육사이트를 데이터 걱정 없이 이용할 수 있습니다 | 현장방문 신청 둘째 주인 11월 2일부터 11월 6일까지는 구분없이 신청할 수 있다. | 0.08 | | 내일 오전에 있는 수업 몇 시에 시작하더라? | 남자친구 생일이 언제야? | 0.0 | | 아무리 우수한 방역체계도 신뢰 없이는 작동하기 어렵습니다. | 콜센터 시설 내외부 방역도 철저히 실시하기로 했다. | 0.12 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 4 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | spearman_cosine | |:------:|:----:|:-------------:|:---------------:| | 0 | 0 | - | 0.3556 | | 0.7610 | 500 | 0.0279 | - | | 1.0 | 657 | - | 0.9086 | | 1.5221 | 1000 | 0.0087 | 0.9158 | | 2.0 | 1314 | - | 0.9177 | | 2.2831 | 1500 | 0.0046 | - | | 3.0 | 1971 | - | 0.9191 | | 3.0441 | 2000 | 0.0034 | 0.9199 | | 3.8052 | 2500 | 0.0027 | - | | 4.0 | 2628 | - | 0.9222 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.014 kWh - **Carbon Emitted**: 0.006 kg of CO2 - **Hours Used**: 0.044 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 4090 - **CPU Model**: Intel(R) Core(TM) i7-14700KF - **RAM Size**: 63.83 GB ### Framework Versions - Python: 3.12.8 - Sentence Transformers: 3.3.1 - Transformers: 4.40.1 - PyTorch: 2.5.1+cu118 - Accelerate: 0.29.3 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```