File size: 32,016 Bytes
ca27ac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
---
base_model: nlpaueb/bert-base-greek-uncased-v1
tags:
- generated_from_trainer
model-index:
- name: bert-base-greek-uncased-v5-finetuned-polylex-mg
results: []
duplicated_from: snousias/bert-base-greek-uncased-v5-finetuned-polylex-mg
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-greek-uncased-v5-finetuned-polylex-mg
This model is a fine-tuned version of [nlpaueb/bert-base-greek-uncased-v1](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3369
## Model description
In this work we appropriately adapt a corpus of multiword expressions in Modern Greek, namely PolylexMG, characterised by the features detailed above formulating its spectrum of idiosyncrasy to finetune Greek BERT transformer model for masked language modelling classification and tasks. The GREEK-BERT model is pre-trained on free text corpora extracted from (a) the Greek part of Wikipedia, (b) the Greek part of the European Parliament Proceedings Parallel Corpus (Europarl), and (c) the Greek part of OSCAR (Koutsikakis et al, 2020:113), this monolingual model is based on the architecture of BERT-BASE-UNCASED. Specifically, Greek BERT has been finetuned with expressions derived from each syntactic category as they are described in PolylexMG (Fotopoulou et al., 2023) that includes 6,000 Greek lexical entries dataset entailing frozen idioms which are semantically fixed with no paradigmatic variation (Lamiroy, 2003) and light verb constructions in which the semantics are traced in the predicative noun and not the verb (Anastassiadis-Symeonidis et al., 2020).
## Results, intended uses & limitations
This subsection presents the experimental evaluation results for the MWE-fine-tuned Greek BERT model with respect to classification use case. The derived setup assumes that raw text in modern Greek that may contain multiple sentences is processed by the language model and reports class with regards to whether the text segment contains multiword stereotypical expressions or not. We compared the fine-tuned BERT model with a baseline logistic regression model. The latter is using as input the same word embeddings as the MWE-fine-tuned BERT model.
Greek-MWE-Bert was trained in a masked language model setting with full-expression-subdataset. The model perplexity was measured tο 303.21 before finetuning and 3.81 after finetuning demonstrating that the model has gained domain knowledge on multiword expressions. Qualitative outcomes presented in the following tables demonstrating the model performance in the case of 16 verbal constructs. The qualitative evaluation demonstrates that the fine-tuned model in all cases generates stereotypical multiword expressions while the original Greek BERT yields incomplete free-text related parts of sentences.
The finetuned model was further finetuned using for classification-oriented architecture with the classification-task-subdataset. The Bert classifier demonstrates an accuracy equivalent to 80% with a higher precision for free text reaching 80% and lower precision of 79% for MWE. In comparison the baseline classifier yields 70% for the free text and 67% for the MWE. We can observe that the two models have only 10% difference in accuracy despite the simplicity of baseline classifier. We can explain the small difference in the trained GreekBERT tokenizer that is used by both our model and the simplistic logistic regression model. However, the MWE-finetuned-Greek-BERT model can better capture sentences that contain MWEs due to the inherent benefits that the architecture offers.
## Training and evaluation data
### Sample of PolylexMG full expression subdataset
|text |label|
|-----------------------|-----|
|αδειάζω τη γωνιά σε |1 |
|αδειάζω πιστόλι πάνω σε|1 |
|αλλάζω τον αδόξαστο σε |1 |
|αλλάζω την πίστη σε |1 |
|δεν αλλάζω ούτε κόμα σε|1 |
|αλλάζω λόγια με |1 |
|αλλάζω κουβέντες με |1 |
|αλλάζω τα μυαλά σε |1 |
|αλλάζω τα φώτα σε |1 |
|αλλάζω τα πετρέλαια σε |1 |
|αλλάζω τα πέταλα σε |1 |
### Sample of PolylexMG classification subdataset
|text |label|
|-----------------------|-----|
|Μέσα σε λίγα λεπτά άναψαν τα αίματα και ο διαπληκτισμός άρχισε να γίνεται όλο και πιο έντονος|1 |
|Η πρώτη έκπληξη ήρθε αμέσως μόλις άναψαν τα τέσσερα κόκκινα φανάρια και το ένα πράσινο|0 |
|Γιατί τα κάνετε αυτά, για να γελάνε οι άλλοι μαζί μας;|0 |
|Κάθε φορά που έμπαινε καλάθι, έβγαζαν τις ίδιες ακριβώς ιαχές για να πάει γούρι και να μην κόψει η μαγιονέζα|1 |
|Η νέα πυρκαγιά ξεκινά από την πίσω πλευρά του Πεντελικού Όρους, σε σημείο που δεν είχε καεί|0 |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500
### Training results (Summary)
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.2105 | 1.0 | 13 | 4.4870 |
| 4.4319 | 2.0 | 26 | 3.8456 |
| 4.0318 | 3.0 | 39 | 3.4164 |
| 3.7558 | 4.0 | 52 | 3.2849 |
| 1.1307 | 497.0 | 6461 | 1.3311 |
| 1.1163 | 498.0 | 6474 | 1.3016 |
| 1.099 | 499.0 | 6487 | 1.3532 |
| 1.1246 | 500.0 | 6500 | 1.2222 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
### Training results (Full)
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.2105 | 1.0 | 13 | 4.4870 |
| 4.4319 | 2.0 | 26 | 3.8456 |
| 4.0318 | 3.0 | 39 | 3.4164 |
| 3.7558 | 4.0 | 52 | 3.2849 |
| 3.5626 | 5.0 | 65 | 3.3146 |
| 3.4355 | 6.0 | 78 | 3.1532 |
| 3.3299 | 7.0 | 91 | 3.0451 |
| 3.2313 | 8.0 | 104 | 2.9359 |
| 3.1758 | 9.0 | 117 | 2.8543 |
| 3.0762 | 10.0 | 130 | 2.8034 |
| 3.0318 | 11.0 | 143 | 2.7975 |
| 2.9481 | 12.0 | 156 | 2.6439 |
| 2.8848 | 13.0 | 169 | 2.6623 |
| 2.9002 | 14.0 | 182 | 2.6425 |
| 2.8435 | 15.0 | 195 | 2.6639 |
| 2.8451 | 16.0 | 208 | 2.6203 |
| 2.7987 | 17.0 | 221 | 2.5597 |
| 2.7522 | 18.0 | 234 | 2.5719 |
| 2.7194 | 19.0 | 247 | 2.6220 |
| 2.6923 | 20.0 | 260 | 2.5566 |
| 2.678 | 21.0 | 273 | 2.4172 |
| 2.6612 | 22.0 | 286 | 2.5726 |
| 2.6272 | 23.0 | 299 | 2.4478 |
| 2.6052 | 24.0 | 312 | 2.4366 |
| 2.5694 | 25.0 | 325 | 2.3694 |
| 2.593 | 26.0 | 338 | 2.4324 |
| 2.548 | 27.0 | 351 | 2.4070 |
| 2.4954 | 28.0 | 364 | 2.3651 |
| 2.5097 | 29.0 | 377 | 2.3268 |
| 2.5041 | 30.0 | 390 | 2.4208 |
| 2.4919 | 31.0 | 403 | 2.4321 |
| 2.461 | 32.0 | 416 | 2.3477 |
| 2.4698 | 33.0 | 429 | 2.4017 |
| 2.4557 | 34.0 | 442 | 2.3050 |
| 2.4464 | 35.0 | 455 | 2.3282 |
| 2.4215 | 36.0 | 468 | 2.3339 |
| 2.4037 | 37.0 | 481 | 2.2429 |
| 2.386 | 38.0 | 494 | 2.3452 |
| 2.3961 | 39.0 | 507 | 2.3312 |
| 2.3985 | 40.0 | 520 | 2.2921 |
| 2.3302 | 41.0 | 533 | 2.2711 |
| 2.3128 | 42.0 | 546 | 2.2344 |
| 2.3158 | 43.0 | 559 | 2.1982 |
| 2.2927 | 44.0 | 572 | 2.1473 |
| 2.3122 | 45.0 | 585 | 2.2317 |
| 2.2885 | 46.0 | 598 | 2.2060 |
| 2.2592 | 47.0 | 611 | 2.1943 |
| 2.2492 | 48.0 | 624 | 2.2361 |
| 2.2495 | 49.0 | 637 | 2.2059 |
| 2.2402 | 50.0 | 650 | 2.1461 |
| 2.241 | 51.0 | 663 | 2.2181 |
| 2.211 | 52.0 | 676 | 2.0885 |
| 2.2165 | 53.0 | 689 | 2.1567 |
| 2.2063 | 54.0 | 702 | 2.2112 |
| 2.1715 | 55.0 | 715 | 2.2934 |
| 2.1601 | 56.0 | 728 | 2.0745 |
| 2.1796 | 57.0 | 741 | 2.1070 |
| 2.152 | 58.0 | 754 | 2.0930 |
| 2.1562 | 59.0 | 767 | 2.1106 |
| 2.125 | 60.0 | 780 | 2.1529 |
| 2.1318 | 61.0 | 793 | 2.0296 |
| 2.1194 | 62.0 | 806 | 2.0323 |
| 2.1396 | 63.0 | 819 | 1.9835 |
| 2.1108 | 64.0 | 832 | 2.0066 |
| 2.0874 | 65.0 | 845 | 1.9062 |
| 2.0754 | 66.0 | 858 | 2.1728 |
| 2.0928 | 67.0 | 871 | 2.0197 |
| 2.0835 | 68.0 | 884 | 2.0767 |
| 2.0684 | 69.0 | 897 | 2.1482 |
| 2.0505 | 70.0 | 910 | 2.0667 |
| 2.0564 | 71.0 | 923 | 2.1489 |
| 2.0478 | 72.0 | 936 | 2.0015 |
| 2.0478 | 73.0 | 949 | 1.9215 |
| 2.0316 | 74.0 | 962 | 2.0238 |
| 2.0171 | 75.0 | 975 | 2.0014 |
| 2.0248 | 76.0 | 988 | 2.0775 |
| 2.0066 | 77.0 | 1001 | 2.0390 |
| 2.0018 | 78.0 | 1014 | 2.0043 |
| 1.9925 | 79.0 | 1027 | 2.0138 |
| 1.9614 | 80.0 | 1040 | 1.9499 |
| 1.9877 | 81.0 | 1053 | 1.9642 |
| 1.9499 | 82.0 | 1066 | 1.9676 |
| 1.932 | 83.0 | 1079 | 1.9332 |
| 1.9353 | 84.0 | 1092 | 1.8787 |
| 1.9672 | 85.0 | 1105 | 1.9720 |
| 1.9313 | 86.0 | 1118 | 1.9343 |
| 1.9292 | 87.0 | 1131 | 1.8964 |
| 1.9277 | 88.0 | 1144 | 1.9619 |
| 1.9158 | 89.0 | 1157 | 1.9608 |
| 1.921 | 90.0 | 1170 | 1.9171 |
| 1.9191 | 91.0 | 1183 | 1.8871 |
| 1.8935 | 92.0 | 1196 | 1.8857 |
| 1.8818 | 93.0 | 1209 | 1.8909 |
| 1.8782 | 94.0 | 1222 | 1.8951 |
| 1.9028 | 95.0 | 1235 | 1.9164 |
| 1.8907 | 96.0 | 1248 | 1.9650 |
| 1.8626 | 97.0 | 1261 | 1.8906 |
| 1.8413 | 98.0 | 1274 | 1.8957 |
| 1.854 | 99.0 | 1287 | 1.9644 |
| 1.8608 | 100.0 | 1300 | 1.8329 |
| 1.8623 | 101.0 | 1313 | 1.8693 |
| 1.7798 | 102.0 | 1326 | 1.8913 |
| 1.846 | 103.0 | 1339 | 1.7854 |
| 1.7972 | 104.0 | 1352 | 1.8611 |
| 1.8443 | 105.0 | 1365 | 1.8482 |
| 1.791 | 106.0 | 1378 | 1.7168 |
| 1.7879 | 107.0 | 1391 | 1.8093 |
| 1.7886 | 108.0 | 1404 | 1.8924 |
| 1.8192 | 109.0 | 1417 | 1.7715 |
| 1.7919 | 110.0 | 1430 | 1.7415 |
| 1.7581 | 111.0 | 1443 | 1.7956 |
| 1.7873 | 112.0 | 1456 | 1.7213 |
| 1.7873 | 113.0 | 1469 | 1.7340 |
| 1.7764 | 114.0 | 1482 | 1.8535 |
| 1.7612 | 115.0 | 1495 | 1.8554 |
| 1.7737 | 116.0 | 1508 | 1.8126 |
| 1.7416 | 117.0 | 1521 | 1.8327 |
| 1.7648 | 118.0 | 1534 | 1.6832 |
| 1.7262 | 119.0 | 1547 | 1.6972 |
| 1.7334 | 120.0 | 1560 | 1.7930 |
| 1.7172 | 121.0 | 1573 | 1.6962 |
| 1.7282 | 122.0 | 1586 | 1.8800 |
| 1.7038 | 123.0 | 1599 | 1.7828 |
| 1.6935 | 124.0 | 1612 | 1.7646 |
| 1.758 | 125.0 | 1625 | 1.8069 |
| 1.7018 | 126.0 | 1638 | 1.6958 |
| 1.6886 | 127.0 | 1651 | 1.6692 |
| 1.7004 | 128.0 | 1664 | 1.7256 |
| 1.6947 | 129.0 | 1677 | 1.7587 |
| 1.6897 | 130.0 | 1690 | 1.7484 |
| 1.7037 | 131.0 | 1703 | 1.8455 |
| 1.6981 | 132.0 | 1716 | 1.7588 |
| 1.6828 | 133.0 | 1729 | 1.7421 |
| 1.6596 | 134.0 | 1742 | 1.6933 |
| 1.6782 | 135.0 | 1755 | 1.7040 |
| 1.6595 | 136.0 | 1768 | 1.6705 |
| 1.6567 | 137.0 | 1781 | 1.7744 |
| 1.6588 | 138.0 | 1794 | 1.6545 |
| 1.6225 | 139.0 | 1807 | 1.7576 |
| 1.6394 | 140.0 | 1820 | 1.7256 |
| 1.6515 | 141.0 | 1833 | 1.6668 |
| 1.6331 | 142.0 | 1846 | 1.7884 |
| 1.6367 | 143.0 | 1859 | 1.7093 |
| 1.6335 | 144.0 | 1872 | 1.7098 |
| 1.6501 | 145.0 | 1885 | 1.6671 |
| 1.6192 | 146.0 | 1898 | 1.7073 |
| 1.6198 | 147.0 | 1911 | 1.6653 |
| 1.6182 | 148.0 | 1924 | 1.6723 |
| 1.6172 | 149.0 | 1937 | 1.7293 |
| 1.6129 | 150.0 | 1950 | 1.6545 |
| 1.6054 | 151.0 | 1963 | 1.6850 |
| 1.5967 | 152.0 | 1976 | 1.7064 |
| 1.6028 | 153.0 | 1989 | 1.5292 |
| 1.6156 | 154.0 | 2002 | 1.6477 |
| 1.5965 | 155.0 | 2015 | 1.6110 |
| 1.5695 | 156.0 | 2028 | 1.7071 |
| 1.5586 | 157.0 | 2041 | 1.6504 |
| 1.561 | 158.0 | 2054 | 1.6147 |
| 1.5643 | 159.0 | 2067 | 1.6941 |
| 1.5797 | 160.0 | 2080 | 1.7398 |
| 1.5609 | 161.0 | 2093 | 1.5761 |
| 1.5465 | 162.0 | 2106 | 1.6003 |
| 1.5467 | 163.0 | 2119 | 1.5839 |
| 1.5935 | 164.0 | 2132 | 1.6530 |
| 1.5439 | 165.0 | 2145 | 1.6743 |
| 1.559 | 166.0 | 2158 | 1.5143 |
| 1.5648 | 167.0 | 2171 | 1.6390 |
| 1.552 | 168.0 | 2184 | 1.5389 |
| 1.5164 | 169.0 | 2197 | 1.5879 |
| 1.5342 | 170.0 | 2210 | 1.6785 |
| 1.5319 | 171.0 | 2223 | 1.6341 |
| 1.5477 | 172.0 | 2236 | 1.7071 |
| 1.5364 | 173.0 | 2249 | 1.6268 |
| 1.5366 | 174.0 | 2262 | 1.7247 |
| 1.5445 | 175.0 | 2275 | 1.6668 |
| 1.4916 | 176.0 | 2288 | 1.5756 |
| 1.509 | 177.0 | 2301 | 1.5412 |
| 1.5316 | 178.0 | 2314 | 1.6270 |
| 1.5156 | 179.0 | 2327 | 1.6423 |
| 1.4918 | 180.0 | 2340 | 1.6112 |
| 1.4997 | 181.0 | 2353 | 1.5775 |
| 1.5187 | 182.0 | 2366 | 1.6248 |
| 1.5254 | 183.0 | 2379 | 1.5884 |
| 1.4732 | 184.0 | 2392 | 1.5787 |
| 1.4844 | 185.0 | 2405 | 1.5358 |
| 1.4882 | 186.0 | 2418 | 1.5144 |
| 1.478 | 187.0 | 2431 | 1.5223 |
| 1.5101 | 188.0 | 2444 | 1.5787 |
| 1.4688 | 189.0 | 2457 | 1.5479 |
| 1.4815 | 190.0 | 2470 | 1.5141 |
| 1.4925 | 191.0 | 2483 | 1.5939 |
| 1.467 | 192.0 | 2496 | 1.5471 |
| 1.4718 | 193.0 | 2509 | 1.6845 |
| 1.4699 | 194.0 | 2522 | 1.5943 |
| 1.4562 | 195.0 | 2535 | 1.4745 |
| 1.4451 | 196.0 | 2548 | 1.5922 |
| 1.4451 | 197.0 | 2561 | 1.5856 |
| 1.4624 | 198.0 | 2574 | 1.5519 |
| 1.444 | 199.0 | 2587 | 1.6538 |
| 1.4498 | 200.0 | 2600 | 1.5037 |
| 1.4285 | 201.0 | 2613 | 1.5539 |
| 1.4439 | 202.0 | 2626 | 1.5387 |
| 1.4177 | 203.0 | 2639 | 1.5756 |
| 1.436 | 204.0 | 2652 | 1.6136 |
| 1.4184 | 205.0 | 2665 | 1.5014 |
| 1.43 | 206.0 | 2678 | 1.4983 |
| 1.4347 | 207.0 | 2691 | 1.5896 |
| 1.39 | 208.0 | 2704 | 1.5506 |
| 1.4198 | 209.0 | 2717 | 1.5142 |
| 1.4101 | 210.0 | 2730 | 1.4930 |
| 1.4219 | 211.0 | 2743 | 1.4814 |
| 1.4039 | 212.0 | 2756 | 1.3750 |
| 1.4479 | 213.0 | 2769 | 1.5330 |
| 1.4354 | 214.0 | 2782 | 1.5179 |
| 1.4163 | 215.0 | 2795 | 1.5970 |
| 1.4459 | 216.0 | 2808 | 1.4755 |
| 1.3714 | 217.0 | 2821 | 1.4230 |
| 1.3957 | 218.0 | 2834 | 1.5087 |
| 1.396 | 219.0 | 2847 | 1.5570 |
| 1.3866 | 220.0 | 2860 | 1.4955 |
| 1.4122 | 221.0 | 2873 | 1.4272 |
| 1.371 | 222.0 | 2886 | 1.5209 |
| 1.3907 | 223.0 | 2899 | 1.4725 |
| 1.3856 | 224.0 | 2912 | 1.5021 |
| 1.4053 | 225.0 | 2925 | 1.4880 |
| 1.4074 | 226.0 | 2938 | 1.4988 |
| 1.3827 | 227.0 | 2951 | 1.5527 |
| 1.4045 | 228.0 | 2964 | 1.5350 |
| 1.3626 | 229.0 | 2977 | 1.5093 |
| 1.3795 | 230.0 | 2990 | 1.4497 |
| 1.3973 | 231.0 | 3003 | 1.5106 |
| 1.3703 | 232.0 | 3016 | 1.4619 |
| 1.3942 | 233.0 | 3029 | 1.4553 |
| 1.3447 | 234.0 | 3042 | 1.5061 |
| 1.3438 | 235.0 | 3055 | 1.5167 |
| 1.3496 | 236.0 | 3068 | 1.4060 |
| 1.3614 | 237.0 | 3081 | 1.4211 |
| 1.3618 | 238.0 | 3094 | 1.4624 |
| 1.359 | 239.0 | 3107 | 1.4450 |
| 1.3657 | 240.0 | 3120 | 1.4795 |
| 1.3599 | 241.0 | 3133 | 1.4887 |
| 1.3532 | 242.0 | 3146 | 1.4606 |
| 1.3528 | 243.0 | 3159 | 1.4225 |
| 1.3445 | 244.0 | 3172 | 1.3912 |
| 1.3344 | 245.0 | 3185 | 1.4055 |
| 1.3358 | 246.0 | 3198 | 1.5152 |
| 1.3591 | 247.0 | 3211 | 1.4825 |
| 1.3162 | 248.0 | 3224 | 1.4721 |
| 1.3197 | 249.0 | 3237 | 1.4375 |
| 1.3358 | 250.0 | 3250 | 1.4644 |
| 1.3374 | 251.0 | 3263 | 1.4449 |
| 1.3548 | 252.0 | 3276 | 1.4405 |
| 1.3266 | 253.0 | 3289 | 1.5357 |
| 1.3172 | 254.0 | 3302 | 1.3515 |
| 1.3089 | 255.0 | 3315 | 1.4408 |
| 1.3209 | 256.0 | 3328 | 1.3895 |
| 1.3047 | 257.0 | 3341 | 1.4508 |
| 1.2877 | 258.0 | 3354 | 1.3954 |
| 1.3409 | 259.0 | 3367 | 1.4417 |
| 1.31 | 260.0 | 3380 | 1.5124 |
| 1.3229 | 261.0 | 3393 | 1.4047 |
| 1.3275 | 262.0 | 3406 | 1.3780 |
| 1.295 | 263.0 | 3419 | 1.4209 |
| 1.3279 | 264.0 | 3432 | 1.3867 |
| 1.291 | 265.0 | 3445 | 1.4694 |
| 1.2839 | 266.0 | 3458 | 1.5100 |
| 1.3064 | 267.0 | 3471 | 1.3646 |
| 1.3086 | 268.0 | 3484 | 1.4390 |
| 1.3381 | 269.0 | 3497 | 1.4367 |
| 1.3333 | 270.0 | 3510 | 1.4078 |
| 1.2775 | 271.0 | 3523 | 1.5213 |
| 1.2989 | 272.0 | 3536 | 1.4341 |
| 1.2759 | 273.0 | 3549 | 1.5165 |
| 1.2796 | 274.0 | 3562 | 1.4705 |
| 1.3037 | 275.0 | 3575 | 1.3945 |
| 1.3132 | 276.0 | 3588 | 1.4560 |
| 1.2816 | 277.0 | 3601 | 1.4123 |
| 1.2934 | 278.0 | 3614 | 1.3742 |
| 1.2873 | 279.0 | 3627 | 1.3824 |
| 1.2842 | 280.0 | 3640 | 1.3269 |
| 1.2617 | 281.0 | 3653 | 1.4345 |
| 1.2661 | 282.0 | 3666 | 1.4682 |
| 1.3096 | 283.0 | 3679 | 1.3989 |
| 1.2724 | 284.0 | 3692 | 1.3142 |
| 1.2529 | 285.0 | 3705 | 1.2795 |
| 1.2611 | 286.0 | 3718 | 1.3844 |
| 1.2578 | 287.0 | 3731 | 1.3536 |
| 1.2854 | 288.0 | 3744 | 1.3770 |
| 1.2811 | 289.0 | 3757 | 1.3892 |
| 1.2189 | 290.0 | 3770 | 1.3767 |
| 1.283 | 291.0 | 3783 | 1.4034 |
| 1.2684 | 292.0 | 3796 | 1.3867 |
| 1.241 | 293.0 | 3809 | 1.3572 |
| 1.2503 | 294.0 | 3822 | 1.3583 |
| 1.2605 | 295.0 | 3835 | 1.4600 |
| 1.2697 | 296.0 | 3848 | 1.2754 |
| 1.2469 | 297.0 | 3861 | 1.4295 |
| 1.2451 | 298.0 | 3874 | 1.4645 |
| 1.2765 | 299.0 | 3887 | 1.3605 |
| 1.2482 | 300.0 | 3900 | 1.4915 |
| 1.2564 | 301.0 | 3913 | 1.3490 |
| 1.233 | 302.0 | 3926 | 1.3273 |
| 1.2313 | 303.0 | 3939 | 1.3861 |
| 1.2491 | 304.0 | 3952 | 1.4016 |
| 1.2607 | 305.0 | 3965 | 1.3714 |
| 1.2548 | 306.0 | 3978 | 1.3572 |
| 1.2536 | 307.0 | 3991 | 1.3630 |
| 1.24 | 308.0 | 4004 | 1.3070 |
| 1.2352 | 309.0 | 4017 | 1.4311 |
| 1.2643 | 310.0 | 4030 | 1.2794 |
| 1.2281 | 311.0 | 4043 | 1.3855 |
| 1.2428 | 312.0 | 4056 | 1.3784 |
| 1.2196 | 313.0 | 4069 | 1.3430 |
| 1.2116 | 314.0 | 4082 | 1.4230 |
| 1.2261 | 315.0 | 4095 | 1.4760 |
| 1.25 | 316.0 | 4108 | 1.3658 |
| 1.2281 | 317.0 | 4121 | 1.3563 |
| 1.2308 | 318.0 | 4134 | 1.3107 |
| 1.2247 | 319.0 | 4147 | 1.3554 |
| 1.2354 | 320.0 | 4160 | 1.3956 |
| 1.2168 | 321.0 | 4173 | 1.2753 |
| 1.2078 | 322.0 | 4186 | 1.3253 |
| 1.2481 | 323.0 | 4199 | 1.3025 |
| 1.2331 | 324.0 | 4212 | 1.3707 |
| 1.1974 | 325.0 | 4225 | 1.2874 |
| 1.212 | 326.0 | 4238 | 1.3210 |
| 1.225 | 327.0 | 4251 | 1.4129 |
| 1.2161 | 328.0 | 4264 | 1.3364 |
| 1.2304 | 329.0 | 4277 | 1.3822 |
| 1.1903 | 330.0 | 4290 | 1.4887 |
| 1.2208 | 331.0 | 4303 | 1.2687 |
| 1.229 | 332.0 | 4316 | 1.3730 |
| 1.205 | 333.0 | 4329 | 1.3521 |
| 1.2023 | 334.0 | 4342 | 1.3770 |
| 1.2151 | 335.0 | 4355 | 1.3095 |
| 1.2255 | 336.0 | 4368 | 1.3003 |
| 1.2205 | 337.0 | 4381 | 1.2123 |
| 1.203 | 338.0 | 4394 | 1.2995 |
| 1.2013 | 339.0 | 4407 | 1.2838 |
| 1.1997 | 340.0 | 4420 | 1.3023 |
| 1.2033 | 341.0 | 4433 | 1.3111 |
| 1.1934 | 342.0 | 4446 | 1.4057 |
| 1.1832 | 343.0 | 4459 | 1.3468 |
| 1.2405 | 344.0 | 4472 | 1.3362 |
| 1.1803 | 345.0 | 4485 | 1.4813 |
| 1.2154 | 346.0 | 4498 | 1.3207 |
| 1.2314 | 347.0 | 4511 | 1.3236 |
| 1.1927 | 348.0 | 4524 | 1.3428 |
| 1.2194 | 349.0 | 4537 | 1.3533 |
| 1.1995 | 350.0 | 4550 | 1.3465 |
| 1.177 | 351.0 | 4563 | 1.3484 |
| 1.1993 | 352.0 | 4576 | 1.2859 |
| 1.1687 | 353.0 | 4589 | 1.2699 |
| 1.2045 | 354.0 | 4602 | 1.3686 |
| 1.2084 | 355.0 | 4615 | 1.3515 |
| 1.1837 | 356.0 | 4628 | 1.2735 |
| 1.1937 | 357.0 | 4641 | 1.2835 |
| 1.2004 | 358.0 | 4654 | 1.2793 |
| 1.1838 | 359.0 | 4667 | 1.2798 |
| 1.2026 | 360.0 | 4680 | 1.3856 |
| 1.1669 | 361.0 | 4693 | 1.3719 |
| 1.1716 | 362.0 | 4706 | 1.2613 |
| 1.1906 | 363.0 | 4719 | 1.2719 |
| 1.1914 | 364.0 | 4732 | 1.3864 |
| 1.1874 | 365.0 | 4745 | 1.3255 |
| 1.1848 | 366.0 | 4758 | 1.2984 |
| 1.1778 | 367.0 | 4771 | 1.3461 |
| 1.1964 | 368.0 | 4784 | 1.3320 |
| 1.16 | 369.0 | 4797 | 1.2962 |
| 1.1873 | 370.0 | 4810 | 1.3035 |
| 1.1632 | 371.0 | 4823 | 1.3465 |
| 1.1807 | 372.0 | 4836 | 1.3453 |
| 1.1331 | 373.0 | 4849 | 1.3527 |
| 1.1694 | 374.0 | 4862 | 1.2928 |
| 1.1615 | 375.0 | 4875 | 1.3519 |
| 1.1944 | 376.0 | 4888 | 1.4072 |
| 1.163 | 377.0 | 4901 | 1.3156 |
| 1.1719 | 378.0 | 4914 | 1.3074 |
| 1.1721 | 379.0 | 4927 | 1.3121 |
| 1.1618 | 380.0 | 4940 | 1.3039 |
| 1.1852 | 381.0 | 4953 | 1.3562 |
| 1.1838 | 382.0 | 4966 | 1.3383 |
| 1.1616 | 383.0 | 4979 | 1.2922 |
| 1.1401 | 384.0 | 4992 | 1.2676 |
| 1.165 | 385.0 | 5005 | 1.2625 |
| 1.1564 | 386.0 | 5018 | 1.1716 |
| 1.1662 | 387.0 | 5031 | 1.2738 |
| 1.1761 | 388.0 | 5044 | 1.4011 |
| 1.1587 | 389.0 | 5057 | 1.3821 |
| 1.1517 | 390.0 | 5070 | 1.2879 |
| 1.1699 | 391.0 | 5083 | 1.2898 |
| 1.149 | 392.0 | 5096 | 1.2710 |
| 1.1541 | 393.0 | 5109 | 1.2612 |
| 1.1597 | 394.0 | 5122 | 1.2993 |
| 1.1449 | 395.0 | 5135 | 1.2522 |
| 1.1332 | 396.0 | 5148 | 1.3367 |
| 1.1537 | 397.0 | 5161 | 1.3018 |
| 1.1789 | 398.0 | 5174 | 1.3705 |
| 1.169 | 399.0 | 5187 | 1.3128 |
| 1.1685 | 400.0 | 5200 | 1.3068 |
| 1.137 | 401.0 | 5213 | 1.2384 |
| 1.177 | 402.0 | 5226 | 1.2547 |
| 1.1592 | 403.0 | 5239 | 1.3295 |
| 1.1477 | 404.0 | 5252 | 1.3415 |
| 1.1465 | 405.0 | 5265 | 1.2466 |
| 1.1743 | 406.0 | 5278 | 1.3045 |
| 1.1386 | 407.0 | 5291 | 1.3124 |
| 1.1379 | 408.0 | 5304 | 1.2826 |
| 1.1828 | 409.0 | 5317 | 1.2788 |
| 1.1353 | 410.0 | 5330 | 1.3787 |
| 1.1536 | 411.0 | 5343 | 1.2968 |
| 1.1495 | 412.0 | 5356 | 1.2920 |
| 1.1424 | 413.0 | 5369 | 1.3238 |
| 1.158 | 414.0 | 5382 | 1.3301 |
| 1.1715 | 415.0 | 5395 | 1.2298 |
| 1.1559 | 416.0 | 5408 | 1.2769 |
| 1.1399 | 417.0 | 5421 | 1.3263 |
| 1.186 | 418.0 | 5434 | 1.2924 |
| 1.1653 | 419.0 | 5447 | 1.3279 |
| 1.14 | 420.0 | 5460 | 1.2892 |
| 1.1463 | 421.0 | 5473 | 1.3875 |
| 1.1406 | 422.0 | 5486 | 1.3136 |
| 1.1705 | 423.0 | 5499 | 1.2579 |
| 1.1065 | 424.0 | 5512 | 1.2955 |
| 1.145 | 425.0 | 5525 | 1.2970 |
| 1.1538 | 426.0 | 5538 | 1.3030 |
| 1.1674 | 427.0 | 5551 | 1.3060 |
| 1.1283 | 428.0 | 5564 | 1.2325 |
| 1.1683 | 429.0 | 5577 | 1.3085 |
| 1.1598 | 430.0 | 5590 | 1.2469 |
| 1.1429 | 431.0 | 5603 | 1.2523 |
| 1.1552 | 432.0 | 5616 | 1.3124 |
| 1.1722 | 433.0 | 5629 | 1.2955 |
| 1.1329 | 434.0 | 5642 | 1.3249 |
| 1.1486 | 435.0 | 5655 | 1.3245 |
| 1.124 | 436.0 | 5668 | 1.4052 |
| 1.1092 | 437.0 | 5681 | 1.2399 |
| 1.135 | 438.0 | 5694 | 1.2788 |
| 1.1637 | 439.0 | 5707 | 1.2844 |
| 1.1712 | 440.0 | 5720 | 1.2531 |
| 1.1401 | 441.0 | 5733 | 1.2790 |
| 1.1195 | 442.0 | 5746 | 1.2876 |
| 1.1524 | 443.0 | 5759 | 1.2565 |
| 1.1292 | 444.0 | 5772 | 1.1492 |
| 1.1342 | 445.0 | 5785 | 1.3050 |
| 1.1628 | 446.0 | 5798 | 1.2911 |
| 1.1286 | 447.0 | 5811 | 1.3624 |
| 1.1193 | 448.0 | 5824 | 1.2382 |
| 1.1521 | 449.0 | 5837 | 1.2717 |
| 1.1128 | 450.0 | 5850 | 1.2865 |
| 1.1321 | 451.0 | 5863 | 1.2785 |
| 1.1707 | 452.0 | 5876 | 1.3514 |
| 1.1431 | 453.0 | 5889 | 1.3321 |
| 1.1413 | 454.0 | 5902 | 1.2886 |
| 1.0983 | 455.0 | 5915 | 1.3165 |
| 1.1202 | 456.0 | 5928 | 1.2375 |
| 1.1259 | 457.0 | 5941 | 1.2166 |
| 1.1353 | 458.0 | 5954 | 1.3579 |
| 1.1272 | 459.0 | 5967 | 1.2890 |
| 1.1411 | 460.0 | 5980 | 1.2397 |
| 1.115 | 461.0 | 5993 | 1.2803 |
| 1.14 | 462.0 | 6006 | 1.2439 |
| 1.11 | 463.0 | 6019 | 1.1894 |
| 1.1539 | 464.0 | 6032 | 1.2979 |
| 1.1052 | 465.0 | 6045 | 1.2281 |
| 1.1092 | 466.0 | 6058 | 1.2853 |
| 1.1229 | 467.0 | 6071 | 1.2988 |
| 1.1209 | 468.0 | 6084 | 1.3058 |
| 1.1147 | 469.0 | 6097 | 1.2705 |
| 1.1228 | 470.0 | 6110 | 1.2435 |
| 1.1124 | 471.0 | 6123 | 1.2188 |
| 1.0922 | 472.0 | 6136 | 1.2892 |
| 1.1228 | 473.0 | 6149 | 1.2250 |
| 1.1341 | 474.0 | 6162 | 1.2373 |
| 1.1295 | 475.0 | 6175 | 1.2126 |
| 1.1105 | 476.0 | 6188 | 1.3032 |
| 1.1223 | 477.0 | 6201 | 1.2190 |
| 1.1487 | 478.0 | 6214 | 1.2728 |
| 1.1288 | 479.0 | 6227 | 1.3258 |
| 1.1398 | 480.0 | 6240 | 1.2114 |
| 1.1127 | 481.0 | 6253 | 1.2695 |
| 1.135 | 482.0 | 6266 | 1.3376 |
| 1.106 | 483.0 | 6279 | 1.2860 |
| 1.0978 | 484.0 | 6292 | 1.3001 |
| 1.1254 | 485.0 | 6305 | 1.3180 |
| 1.1117 | 486.0 | 6318 | 1.3036 |
| 1.1249 | 487.0 | 6331 | 1.2380 |
| 1.1111 | 488.0 | 6344 | 1.3112 |
| 1.119 | 489.0 | 6357 | 1.2587 |
| 1.1203 | 490.0 | 6370 | 1.2867 |
| 1.1195 | 491.0 | 6383 | 1.3153 |
| 1.1304 | 492.0 | 6396 | 1.2762 |
| 1.1268 | 493.0 | 6409 | 1.2757 |
| 1.1478 | 494.0 | 6422 | 1.2493 |
| 1.1527 | 495.0 | 6435 | 1.2793 |
| 1.1252 | 496.0 | 6448 | 1.2435 |
| 1.1307 | 497.0 | 6461 | 1.3311 |
| 1.1163 | 498.0 | 6474 | 1.3016 |
| 1.099 | 499.0 | 6487 | 1.3532 |
| 1.1246 | 500.0 | 6500 | 1.2222 |
|