File size: 32,016 Bytes
ca27ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
---
base_model: nlpaueb/bert-base-greek-uncased-v1
tags:
- generated_from_trainer
model-index:
- name: bert-base-greek-uncased-v5-finetuned-polylex-mg
  results: []
duplicated_from: snousias/bert-base-greek-uncased-v5-finetuned-polylex-mg
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-greek-uncased-v5-finetuned-polylex-mg

This model is a fine-tuned version of [nlpaueb/bert-base-greek-uncased-v1](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3369

## Model description

In this work we appropriately adapt a corpus of multiword expressions in Modern Greek, namely PolylexMG, characterised by the features detailed above formulating its spectrum of idiosyncrasy to finetune Greek BERT transformer model for masked language modelling classification and tasks. The GREEK-BERT model is pre-trained on free text corpora extracted from (a) the Greek part of Wikipedia, (b) the Greek part of the European Parliament Proceedings Parallel Corpus (Europarl), and (c) the Greek part of OSCAR (Koutsikakis et al, 2020:113), this monolingual model is based on the architecture of BERT-BASE-UNCASED. Specifically, Greek BERT has been finetuned with expressions derived from each syntactic category as they are described in PolylexMG (Fotopoulou et al., 2023) that includes 6,000 Greek lexical entries dataset entailing frozen idioms which are semantically fixed with no paradigmatic variation (Lamiroy, 2003) and light verb constructions in which the semantics are traced in the predicative noun and not the verb (Anastassiadis-Symeonidis et al., 2020).

## Results, intended uses & limitations

This subsection presents the experimental evaluation results for the MWE-fine-tuned Greek BERT model with respect to classification use case. The derived setup assumes that raw text in modern Greek that may contain multiple sentences is processed by the language model and reports class with regards to whether the text segment contains multiword stereotypical expressions or not. We compared the fine-tuned BERT model with a baseline logistic regression model. The latter is using as input the same word embeddings as the MWE-fine-tuned BERT model.  
Greek-MWE-Bert was trained in a masked language model setting with full-expression-subdataset. The model perplexity was measured tο 303.21 before finetuning and 3.81 after finetuning demonstrating that the model has gained domain knowledge on multiword expressions. Qualitative outcomes presented in the following tables demonstrating the model performance in the case of 16 verbal constructs. The qualitative evaluation demonstrates that the fine-tuned model in all cases generates stereotypical multiword expressions while the original Greek BERT yields incomplete free-text related parts of sentences. 

The finetuned model was further finetuned using for classification-oriented architecture with the classification-task-subdataset. The Bert classifier demonstrates an accuracy equivalent to 80% with a higher precision for free text reaching 80% and lower precision of 79% for MWE. In comparison the baseline classifier yields 70% for the free text and 67% for the MWE. We can observe that the two models have only 10% difference in accuracy despite the simplicity of baseline classifier. We can explain the small difference in the trained GreekBERT tokenizer that is used by both our model and the simplistic logistic regression model. However, the MWE-finetuned-Greek-BERT model can better capture sentences that contain MWEs due to the inherent benefits that the architecture offers. 	


## Training and evaluation data

### Sample of PolylexMG full expression subdataset

|text                   |label|
|-----------------------|-----|
|αδειάζω τη γωνιά σε    |1    |
|αδειάζω πιστόλι πάνω σε|1    |
|αλλάζω τον αδόξαστο σε |1    |
|αλλάζω την πίστη σε    |1    |
|δεν αλλάζω ούτε κόμα σε|1    |
|αλλάζω λόγια με        |1    |
|αλλάζω κουβέντες με    |1    |
|αλλάζω τα μυαλά σε     |1    |
|αλλάζω τα φώτα σε      |1    |
|αλλάζω τα πετρέλαια σε |1    |
|αλλάζω τα πέταλα σε    |1    |


### Sample of PolylexMG classification subdataset

|text                   |label|
|-----------------------|-----|
|Μέσα σε λίγα λεπτά άναψαν τα αίματα και ο διαπληκτισμός άρχισε να γίνεται όλο και πιο έντονος|1    |
|Η πρώτη έκπληξη ήρθε αμέσως μόλις άναψαν τα τέσσερα κόκκινα φανάρια και το ένα πράσινο|0    |
|Γιατί τα κάνετε αυτά, για να γελάνε οι άλλοι μαζί μας;|0    |
|Κάθε φορά που έμπαινε καλάθι, έβγαζαν τις ίδιες ακριβώς ιαχές για να πάει γούρι και να μην κόψει η μαγιονέζα|1    |
|Η νέα πυρκαγιά ξεκινά από την πίσω πλευρά του Πεντελικού Όρους, σε σημείο που δεν είχε καεί|0    |

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500


### Training results (Summary)

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.2105        | 1.0   | 13   | 4.4870          |
| 4.4319        | 2.0   | 26   | 3.8456          |
| 4.0318        | 3.0   | 39   | 3.4164          |
| 3.7558        | 4.0   | 52   | 3.2849          |
| 1.1307        | 497.0 | 6461 | 1.3311          |
| 1.1163        | 498.0 | 6474 | 1.3016          |
| 1.099         | 499.0 | 6487 | 1.3532          |
| 1.1246        | 500.0 | 6500 | 1.2222          |

### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3


### Training results (Full)

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.2105        | 1.0   | 13   | 4.4870          |
| 4.4319        | 2.0   | 26   | 3.8456          |
| 4.0318        | 3.0   | 39   | 3.4164          |
| 3.7558        | 4.0   | 52   | 3.2849          |
| 3.5626        | 5.0   | 65   | 3.3146          |
| 3.4355        | 6.0   | 78   | 3.1532          |
| 3.3299        | 7.0   | 91   | 3.0451          |
| 3.2313        | 8.0   | 104  | 2.9359          |
| 3.1758        | 9.0   | 117  | 2.8543          |
| 3.0762        | 10.0  | 130  | 2.8034          |
| 3.0318        | 11.0  | 143  | 2.7975          |
| 2.9481        | 12.0  | 156  | 2.6439          |
| 2.8848        | 13.0  | 169  | 2.6623          |
| 2.9002        | 14.0  | 182  | 2.6425          |
| 2.8435        | 15.0  | 195  | 2.6639          |
| 2.8451        | 16.0  | 208  | 2.6203          |
| 2.7987        | 17.0  | 221  | 2.5597          |
| 2.7522        | 18.0  | 234  | 2.5719          |
| 2.7194        | 19.0  | 247  | 2.6220          |
| 2.6923        | 20.0  | 260  | 2.5566          |
| 2.678         | 21.0  | 273  | 2.4172          |
| 2.6612        | 22.0  | 286  | 2.5726          |
| 2.6272        | 23.0  | 299  | 2.4478          |
| 2.6052        | 24.0  | 312  | 2.4366          |
| 2.5694        | 25.0  | 325  | 2.3694          |
| 2.593         | 26.0  | 338  | 2.4324          |
| 2.548         | 27.0  | 351  | 2.4070          |
| 2.4954        | 28.0  | 364  | 2.3651          |
| 2.5097        | 29.0  | 377  | 2.3268          |
| 2.5041        | 30.0  | 390  | 2.4208          |
| 2.4919        | 31.0  | 403  | 2.4321          |
| 2.461         | 32.0  | 416  | 2.3477          |
| 2.4698        | 33.0  | 429  | 2.4017          |
| 2.4557        | 34.0  | 442  | 2.3050          |
| 2.4464        | 35.0  | 455  | 2.3282          |
| 2.4215        | 36.0  | 468  | 2.3339          |
| 2.4037        | 37.0  | 481  | 2.2429          |
| 2.386         | 38.0  | 494  | 2.3452          |
| 2.3961        | 39.0  | 507  | 2.3312          |
| 2.3985        | 40.0  | 520  | 2.2921          |
| 2.3302        | 41.0  | 533  | 2.2711          |
| 2.3128        | 42.0  | 546  | 2.2344          |
| 2.3158        | 43.0  | 559  | 2.1982          |
| 2.2927        | 44.0  | 572  | 2.1473          |
| 2.3122        | 45.0  | 585  | 2.2317          |
| 2.2885        | 46.0  | 598  | 2.2060          |
| 2.2592        | 47.0  | 611  | 2.1943          |
| 2.2492        | 48.0  | 624  | 2.2361          |
| 2.2495        | 49.0  | 637  | 2.2059          |
| 2.2402        | 50.0  | 650  | 2.1461          |
| 2.241         | 51.0  | 663  | 2.2181          |
| 2.211         | 52.0  | 676  | 2.0885          |
| 2.2165        | 53.0  | 689  | 2.1567          |
| 2.2063        | 54.0  | 702  | 2.2112          |
| 2.1715        | 55.0  | 715  | 2.2934          |
| 2.1601        | 56.0  | 728  | 2.0745          |
| 2.1796        | 57.0  | 741  | 2.1070          |
| 2.152         | 58.0  | 754  | 2.0930          |
| 2.1562        | 59.0  | 767  | 2.1106          |
| 2.125         | 60.0  | 780  | 2.1529          |
| 2.1318        | 61.0  | 793  | 2.0296          |
| 2.1194        | 62.0  | 806  | 2.0323          |
| 2.1396        | 63.0  | 819  | 1.9835          |
| 2.1108        | 64.0  | 832  | 2.0066          |
| 2.0874        | 65.0  | 845  | 1.9062          |
| 2.0754        | 66.0  | 858  | 2.1728          |
| 2.0928        | 67.0  | 871  | 2.0197          |
| 2.0835        | 68.0  | 884  | 2.0767          |
| 2.0684        | 69.0  | 897  | 2.1482          |
| 2.0505        | 70.0  | 910  | 2.0667          |
| 2.0564        | 71.0  | 923  | 2.1489          |
| 2.0478        | 72.0  | 936  | 2.0015          |
| 2.0478        | 73.0  | 949  | 1.9215          |
| 2.0316        | 74.0  | 962  | 2.0238          |
| 2.0171        | 75.0  | 975  | 2.0014          |
| 2.0248        | 76.0  | 988  | 2.0775          |
| 2.0066        | 77.0  | 1001 | 2.0390          |
| 2.0018        | 78.0  | 1014 | 2.0043          |
| 1.9925        | 79.0  | 1027 | 2.0138          |
| 1.9614        | 80.0  | 1040 | 1.9499          |
| 1.9877        | 81.0  | 1053 | 1.9642          |
| 1.9499        | 82.0  | 1066 | 1.9676          |
| 1.932         | 83.0  | 1079 | 1.9332          |
| 1.9353        | 84.0  | 1092 | 1.8787          |
| 1.9672        | 85.0  | 1105 | 1.9720          |
| 1.9313        | 86.0  | 1118 | 1.9343          |
| 1.9292        | 87.0  | 1131 | 1.8964          |
| 1.9277        | 88.0  | 1144 | 1.9619          |
| 1.9158        | 89.0  | 1157 | 1.9608          |
| 1.921         | 90.0  | 1170 | 1.9171          |
| 1.9191        | 91.0  | 1183 | 1.8871          |
| 1.8935        | 92.0  | 1196 | 1.8857          |
| 1.8818        | 93.0  | 1209 | 1.8909          |
| 1.8782        | 94.0  | 1222 | 1.8951          |
| 1.9028        | 95.0  | 1235 | 1.9164          |
| 1.8907        | 96.0  | 1248 | 1.9650          |
| 1.8626        | 97.0  | 1261 | 1.8906          |
| 1.8413        | 98.0  | 1274 | 1.8957          |
| 1.854         | 99.0  | 1287 | 1.9644          |
| 1.8608        | 100.0 | 1300 | 1.8329          |
| 1.8623        | 101.0 | 1313 | 1.8693          |
| 1.7798        | 102.0 | 1326 | 1.8913          |
| 1.846         | 103.0 | 1339 | 1.7854          |
| 1.7972        | 104.0 | 1352 | 1.8611          |
| 1.8443        | 105.0 | 1365 | 1.8482          |
| 1.791         | 106.0 | 1378 | 1.7168          |
| 1.7879        | 107.0 | 1391 | 1.8093          |
| 1.7886        | 108.0 | 1404 | 1.8924          |
| 1.8192        | 109.0 | 1417 | 1.7715          |
| 1.7919        | 110.0 | 1430 | 1.7415          |
| 1.7581        | 111.0 | 1443 | 1.7956          |
| 1.7873        | 112.0 | 1456 | 1.7213          |
| 1.7873        | 113.0 | 1469 | 1.7340          |
| 1.7764        | 114.0 | 1482 | 1.8535          |
| 1.7612        | 115.0 | 1495 | 1.8554          |
| 1.7737        | 116.0 | 1508 | 1.8126          |
| 1.7416        | 117.0 | 1521 | 1.8327          |
| 1.7648        | 118.0 | 1534 | 1.6832          |
| 1.7262        | 119.0 | 1547 | 1.6972          |
| 1.7334        | 120.0 | 1560 | 1.7930          |
| 1.7172        | 121.0 | 1573 | 1.6962          |
| 1.7282        | 122.0 | 1586 | 1.8800          |
| 1.7038        | 123.0 | 1599 | 1.7828          |
| 1.6935        | 124.0 | 1612 | 1.7646          |
| 1.758         | 125.0 | 1625 | 1.8069          |
| 1.7018        | 126.0 | 1638 | 1.6958          |
| 1.6886        | 127.0 | 1651 | 1.6692          |
| 1.7004        | 128.0 | 1664 | 1.7256          |
| 1.6947        | 129.0 | 1677 | 1.7587          |
| 1.6897        | 130.0 | 1690 | 1.7484          |
| 1.7037        | 131.0 | 1703 | 1.8455          |
| 1.6981        | 132.0 | 1716 | 1.7588          |
| 1.6828        | 133.0 | 1729 | 1.7421          |
| 1.6596        | 134.0 | 1742 | 1.6933          |
| 1.6782        | 135.0 | 1755 | 1.7040          |
| 1.6595        | 136.0 | 1768 | 1.6705          |
| 1.6567        | 137.0 | 1781 | 1.7744          |
| 1.6588        | 138.0 | 1794 | 1.6545          |
| 1.6225        | 139.0 | 1807 | 1.7576          |
| 1.6394        | 140.0 | 1820 | 1.7256          |
| 1.6515        | 141.0 | 1833 | 1.6668          |
| 1.6331        | 142.0 | 1846 | 1.7884          |
| 1.6367        | 143.0 | 1859 | 1.7093          |
| 1.6335        | 144.0 | 1872 | 1.7098          |
| 1.6501        | 145.0 | 1885 | 1.6671          |
| 1.6192        | 146.0 | 1898 | 1.7073          |
| 1.6198        | 147.0 | 1911 | 1.6653          |
| 1.6182        | 148.0 | 1924 | 1.6723          |
| 1.6172        | 149.0 | 1937 | 1.7293          |
| 1.6129        | 150.0 | 1950 | 1.6545          |
| 1.6054        | 151.0 | 1963 | 1.6850          |
| 1.5967        | 152.0 | 1976 | 1.7064          |
| 1.6028        | 153.0 | 1989 | 1.5292          |
| 1.6156        | 154.0 | 2002 | 1.6477          |
| 1.5965        | 155.0 | 2015 | 1.6110          |
| 1.5695        | 156.0 | 2028 | 1.7071          |
| 1.5586        | 157.0 | 2041 | 1.6504          |
| 1.561         | 158.0 | 2054 | 1.6147          |
| 1.5643        | 159.0 | 2067 | 1.6941          |
| 1.5797        | 160.0 | 2080 | 1.7398          |
| 1.5609        | 161.0 | 2093 | 1.5761          |
| 1.5465        | 162.0 | 2106 | 1.6003          |
| 1.5467        | 163.0 | 2119 | 1.5839          |
| 1.5935        | 164.0 | 2132 | 1.6530          |
| 1.5439        | 165.0 | 2145 | 1.6743          |
| 1.559         | 166.0 | 2158 | 1.5143          |
| 1.5648        | 167.0 | 2171 | 1.6390          |
| 1.552         | 168.0 | 2184 | 1.5389          |
| 1.5164        | 169.0 | 2197 | 1.5879          |
| 1.5342        | 170.0 | 2210 | 1.6785          |
| 1.5319        | 171.0 | 2223 | 1.6341          |
| 1.5477        | 172.0 | 2236 | 1.7071          |
| 1.5364        | 173.0 | 2249 | 1.6268          |
| 1.5366        | 174.0 | 2262 | 1.7247          |
| 1.5445        | 175.0 | 2275 | 1.6668          |
| 1.4916        | 176.0 | 2288 | 1.5756          |
| 1.509         | 177.0 | 2301 | 1.5412          |
| 1.5316        | 178.0 | 2314 | 1.6270          |
| 1.5156        | 179.0 | 2327 | 1.6423          |
| 1.4918        | 180.0 | 2340 | 1.6112          |
| 1.4997        | 181.0 | 2353 | 1.5775          |
| 1.5187        | 182.0 | 2366 | 1.6248          |
| 1.5254        | 183.0 | 2379 | 1.5884          |
| 1.4732        | 184.0 | 2392 | 1.5787          |
| 1.4844        | 185.0 | 2405 | 1.5358          |
| 1.4882        | 186.0 | 2418 | 1.5144          |
| 1.478         | 187.0 | 2431 | 1.5223          |
| 1.5101        | 188.0 | 2444 | 1.5787          |
| 1.4688        | 189.0 | 2457 | 1.5479          |
| 1.4815        | 190.0 | 2470 | 1.5141          |
| 1.4925        | 191.0 | 2483 | 1.5939          |
| 1.467         | 192.0 | 2496 | 1.5471          |
| 1.4718        | 193.0 | 2509 | 1.6845          |
| 1.4699        | 194.0 | 2522 | 1.5943          |
| 1.4562        | 195.0 | 2535 | 1.4745          |
| 1.4451        | 196.0 | 2548 | 1.5922          |
| 1.4451        | 197.0 | 2561 | 1.5856          |
| 1.4624        | 198.0 | 2574 | 1.5519          |
| 1.444         | 199.0 | 2587 | 1.6538          |
| 1.4498        | 200.0 | 2600 | 1.5037          |
| 1.4285        | 201.0 | 2613 | 1.5539          |
| 1.4439        | 202.0 | 2626 | 1.5387          |
| 1.4177        | 203.0 | 2639 | 1.5756          |
| 1.436         | 204.0 | 2652 | 1.6136          |
| 1.4184        | 205.0 | 2665 | 1.5014          |
| 1.43          | 206.0 | 2678 | 1.4983          |
| 1.4347        | 207.0 | 2691 | 1.5896          |
| 1.39          | 208.0 | 2704 | 1.5506          |
| 1.4198        | 209.0 | 2717 | 1.5142          |
| 1.4101        | 210.0 | 2730 | 1.4930          |
| 1.4219        | 211.0 | 2743 | 1.4814          |
| 1.4039        | 212.0 | 2756 | 1.3750          |
| 1.4479        | 213.0 | 2769 | 1.5330          |
| 1.4354        | 214.0 | 2782 | 1.5179          |
| 1.4163        | 215.0 | 2795 | 1.5970          |
| 1.4459        | 216.0 | 2808 | 1.4755          |
| 1.3714        | 217.0 | 2821 | 1.4230          |
| 1.3957        | 218.0 | 2834 | 1.5087          |
| 1.396         | 219.0 | 2847 | 1.5570          |
| 1.3866        | 220.0 | 2860 | 1.4955          |
| 1.4122        | 221.0 | 2873 | 1.4272          |
| 1.371         | 222.0 | 2886 | 1.5209          |
| 1.3907        | 223.0 | 2899 | 1.4725          |
| 1.3856        | 224.0 | 2912 | 1.5021          |
| 1.4053        | 225.0 | 2925 | 1.4880          |
| 1.4074        | 226.0 | 2938 | 1.4988          |
| 1.3827        | 227.0 | 2951 | 1.5527          |
| 1.4045        | 228.0 | 2964 | 1.5350          |
| 1.3626        | 229.0 | 2977 | 1.5093          |
| 1.3795        | 230.0 | 2990 | 1.4497          |
| 1.3973        | 231.0 | 3003 | 1.5106          |
| 1.3703        | 232.0 | 3016 | 1.4619          |
| 1.3942        | 233.0 | 3029 | 1.4553          |
| 1.3447        | 234.0 | 3042 | 1.5061          |
| 1.3438        | 235.0 | 3055 | 1.5167          |
| 1.3496        | 236.0 | 3068 | 1.4060          |
| 1.3614        | 237.0 | 3081 | 1.4211          |
| 1.3618        | 238.0 | 3094 | 1.4624          |
| 1.359         | 239.0 | 3107 | 1.4450          |
| 1.3657        | 240.0 | 3120 | 1.4795          |
| 1.3599        | 241.0 | 3133 | 1.4887          |
| 1.3532        | 242.0 | 3146 | 1.4606          |
| 1.3528        | 243.0 | 3159 | 1.4225          |
| 1.3445        | 244.0 | 3172 | 1.3912          |
| 1.3344        | 245.0 | 3185 | 1.4055          |
| 1.3358        | 246.0 | 3198 | 1.5152          |
| 1.3591        | 247.0 | 3211 | 1.4825          |
| 1.3162        | 248.0 | 3224 | 1.4721          |
| 1.3197        | 249.0 | 3237 | 1.4375          |
| 1.3358        | 250.0 | 3250 | 1.4644          |
| 1.3374        | 251.0 | 3263 | 1.4449          |
| 1.3548        | 252.0 | 3276 | 1.4405          |
| 1.3266        | 253.0 | 3289 | 1.5357          |
| 1.3172        | 254.0 | 3302 | 1.3515          |
| 1.3089        | 255.0 | 3315 | 1.4408          |
| 1.3209        | 256.0 | 3328 | 1.3895          |
| 1.3047        | 257.0 | 3341 | 1.4508          |
| 1.2877        | 258.0 | 3354 | 1.3954          |
| 1.3409        | 259.0 | 3367 | 1.4417          |
| 1.31          | 260.0 | 3380 | 1.5124          |
| 1.3229        | 261.0 | 3393 | 1.4047          |
| 1.3275        | 262.0 | 3406 | 1.3780          |
| 1.295         | 263.0 | 3419 | 1.4209          |
| 1.3279        | 264.0 | 3432 | 1.3867          |
| 1.291         | 265.0 | 3445 | 1.4694          |
| 1.2839        | 266.0 | 3458 | 1.5100          |
| 1.3064        | 267.0 | 3471 | 1.3646          |
| 1.3086        | 268.0 | 3484 | 1.4390          |
| 1.3381        | 269.0 | 3497 | 1.4367          |
| 1.3333        | 270.0 | 3510 | 1.4078          |
| 1.2775        | 271.0 | 3523 | 1.5213          |
| 1.2989        | 272.0 | 3536 | 1.4341          |
| 1.2759        | 273.0 | 3549 | 1.5165          |
| 1.2796        | 274.0 | 3562 | 1.4705          |
| 1.3037        | 275.0 | 3575 | 1.3945          |
| 1.3132        | 276.0 | 3588 | 1.4560          |
| 1.2816        | 277.0 | 3601 | 1.4123          |
| 1.2934        | 278.0 | 3614 | 1.3742          |
| 1.2873        | 279.0 | 3627 | 1.3824          |
| 1.2842        | 280.0 | 3640 | 1.3269          |
| 1.2617        | 281.0 | 3653 | 1.4345          |
| 1.2661        | 282.0 | 3666 | 1.4682          |
| 1.3096        | 283.0 | 3679 | 1.3989          |
| 1.2724        | 284.0 | 3692 | 1.3142          |
| 1.2529        | 285.0 | 3705 | 1.2795          |
| 1.2611        | 286.0 | 3718 | 1.3844          |
| 1.2578        | 287.0 | 3731 | 1.3536          |
| 1.2854        | 288.0 | 3744 | 1.3770          |
| 1.2811        | 289.0 | 3757 | 1.3892          |
| 1.2189        | 290.0 | 3770 | 1.3767          |
| 1.283         | 291.0 | 3783 | 1.4034          |
| 1.2684        | 292.0 | 3796 | 1.3867          |
| 1.241         | 293.0 | 3809 | 1.3572          |
| 1.2503        | 294.0 | 3822 | 1.3583          |
| 1.2605        | 295.0 | 3835 | 1.4600          |
| 1.2697        | 296.0 | 3848 | 1.2754          |
| 1.2469        | 297.0 | 3861 | 1.4295          |
| 1.2451        | 298.0 | 3874 | 1.4645          |
| 1.2765        | 299.0 | 3887 | 1.3605          |
| 1.2482        | 300.0 | 3900 | 1.4915          |
| 1.2564        | 301.0 | 3913 | 1.3490          |
| 1.233         | 302.0 | 3926 | 1.3273          |
| 1.2313        | 303.0 | 3939 | 1.3861          |
| 1.2491        | 304.0 | 3952 | 1.4016          |
| 1.2607        | 305.0 | 3965 | 1.3714          |
| 1.2548        | 306.0 | 3978 | 1.3572          |
| 1.2536        | 307.0 | 3991 | 1.3630          |
| 1.24          | 308.0 | 4004 | 1.3070          |
| 1.2352        | 309.0 | 4017 | 1.4311          |
| 1.2643        | 310.0 | 4030 | 1.2794          |
| 1.2281        | 311.0 | 4043 | 1.3855          |
| 1.2428        | 312.0 | 4056 | 1.3784          |
| 1.2196        | 313.0 | 4069 | 1.3430          |
| 1.2116        | 314.0 | 4082 | 1.4230          |
| 1.2261        | 315.0 | 4095 | 1.4760          |
| 1.25          | 316.0 | 4108 | 1.3658          |
| 1.2281        | 317.0 | 4121 | 1.3563          |
| 1.2308        | 318.0 | 4134 | 1.3107          |
| 1.2247        | 319.0 | 4147 | 1.3554          |
| 1.2354        | 320.0 | 4160 | 1.3956          |
| 1.2168        | 321.0 | 4173 | 1.2753          |
| 1.2078        | 322.0 | 4186 | 1.3253          |
| 1.2481        | 323.0 | 4199 | 1.3025          |
| 1.2331        | 324.0 | 4212 | 1.3707          |
| 1.1974        | 325.0 | 4225 | 1.2874          |
| 1.212         | 326.0 | 4238 | 1.3210          |
| 1.225         | 327.0 | 4251 | 1.4129          |
| 1.2161        | 328.0 | 4264 | 1.3364          |
| 1.2304        | 329.0 | 4277 | 1.3822          |
| 1.1903        | 330.0 | 4290 | 1.4887          |
| 1.2208        | 331.0 | 4303 | 1.2687          |
| 1.229         | 332.0 | 4316 | 1.3730          |
| 1.205         | 333.0 | 4329 | 1.3521          |
| 1.2023        | 334.0 | 4342 | 1.3770          |
| 1.2151        | 335.0 | 4355 | 1.3095          |
| 1.2255        | 336.0 | 4368 | 1.3003          |
| 1.2205        | 337.0 | 4381 | 1.2123          |
| 1.203         | 338.0 | 4394 | 1.2995          |
| 1.2013        | 339.0 | 4407 | 1.2838          |
| 1.1997        | 340.0 | 4420 | 1.3023          |
| 1.2033        | 341.0 | 4433 | 1.3111          |
| 1.1934        | 342.0 | 4446 | 1.4057          |
| 1.1832        | 343.0 | 4459 | 1.3468          |
| 1.2405        | 344.0 | 4472 | 1.3362          |
| 1.1803        | 345.0 | 4485 | 1.4813          |
| 1.2154        | 346.0 | 4498 | 1.3207          |
| 1.2314        | 347.0 | 4511 | 1.3236          |
| 1.1927        | 348.0 | 4524 | 1.3428          |
| 1.2194        | 349.0 | 4537 | 1.3533          |
| 1.1995        | 350.0 | 4550 | 1.3465          |
| 1.177         | 351.0 | 4563 | 1.3484          |
| 1.1993        | 352.0 | 4576 | 1.2859          |
| 1.1687        | 353.0 | 4589 | 1.2699          |
| 1.2045        | 354.0 | 4602 | 1.3686          |
| 1.2084        | 355.0 | 4615 | 1.3515          |
| 1.1837        | 356.0 | 4628 | 1.2735          |
| 1.1937        | 357.0 | 4641 | 1.2835          |
| 1.2004        | 358.0 | 4654 | 1.2793          |
| 1.1838        | 359.0 | 4667 | 1.2798          |
| 1.2026        | 360.0 | 4680 | 1.3856          |
| 1.1669        | 361.0 | 4693 | 1.3719          |
| 1.1716        | 362.0 | 4706 | 1.2613          |
| 1.1906        | 363.0 | 4719 | 1.2719          |
| 1.1914        | 364.0 | 4732 | 1.3864          |
| 1.1874        | 365.0 | 4745 | 1.3255          |
| 1.1848        | 366.0 | 4758 | 1.2984          |
| 1.1778        | 367.0 | 4771 | 1.3461          |
| 1.1964        | 368.0 | 4784 | 1.3320          |
| 1.16          | 369.0 | 4797 | 1.2962          |
| 1.1873        | 370.0 | 4810 | 1.3035          |
| 1.1632        | 371.0 | 4823 | 1.3465          |
| 1.1807        | 372.0 | 4836 | 1.3453          |
| 1.1331        | 373.0 | 4849 | 1.3527          |
| 1.1694        | 374.0 | 4862 | 1.2928          |
| 1.1615        | 375.0 | 4875 | 1.3519          |
| 1.1944        | 376.0 | 4888 | 1.4072          |
| 1.163         | 377.0 | 4901 | 1.3156          |
| 1.1719        | 378.0 | 4914 | 1.3074          |
| 1.1721        | 379.0 | 4927 | 1.3121          |
| 1.1618        | 380.0 | 4940 | 1.3039          |
| 1.1852        | 381.0 | 4953 | 1.3562          |
| 1.1838        | 382.0 | 4966 | 1.3383          |
| 1.1616        | 383.0 | 4979 | 1.2922          |
| 1.1401        | 384.0 | 4992 | 1.2676          |
| 1.165         | 385.0 | 5005 | 1.2625          |
| 1.1564        | 386.0 | 5018 | 1.1716          |
| 1.1662        | 387.0 | 5031 | 1.2738          |
| 1.1761        | 388.0 | 5044 | 1.4011          |
| 1.1587        | 389.0 | 5057 | 1.3821          |
| 1.1517        | 390.0 | 5070 | 1.2879          |
| 1.1699        | 391.0 | 5083 | 1.2898          |
| 1.149         | 392.0 | 5096 | 1.2710          |
| 1.1541        | 393.0 | 5109 | 1.2612          |
| 1.1597        | 394.0 | 5122 | 1.2993          |
| 1.1449        | 395.0 | 5135 | 1.2522          |
| 1.1332        | 396.0 | 5148 | 1.3367          |
| 1.1537        | 397.0 | 5161 | 1.3018          |
| 1.1789        | 398.0 | 5174 | 1.3705          |
| 1.169         | 399.0 | 5187 | 1.3128          |
| 1.1685        | 400.0 | 5200 | 1.3068          |
| 1.137         | 401.0 | 5213 | 1.2384          |
| 1.177         | 402.0 | 5226 | 1.2547          |
| 1.1592        | 403.0 | 5239 | 1.3295          |
| 1.1477        | 404.0 | 5252 | 1.3415          |
| 1.1465        | 405.0 | 5265 | 1.2466          |
| 1.1743        | 406.0 | 5278 | 1.3045          |
| 1.1386        | 407.0 | 5291 | 1.3124          |
| 1.1379        | 408.0 | 5304 | 1.2826          |
| 1.1828        | 409.0 | 5317 | 1.2788          |
| 1.1353        | 410.0 | 5330 | 1.3787          |
| 1.1536        | 411.0 | 5343 | 1.2968          |
| 1.1495        | 412.0 | 5356 | 1.2920          |
| 1.1424        | 413.0 | 5369 | 1.3238          |
| 1.158         | 414.0 | 5382 | 1.3301          |
| 1.1715        | 415.0 | 5395 | 1.2298          |
| 1.1559        | 416.0 | 5408 | 1.2769          |
| 1.1399        | 417.0 | 5421 | 1.3263          |
| 1.186         | 418.0 | 5434 | 1.2924          |
| 1.1653        | 419.0 | 5447 | 1.3279          |
| 1.14          | 420.0 | 5460 | 1.2892          |
| 1.1463        | 421.0 | 5473 | 1.3875          |
| 1.1406        | 422.0 | 5486 | 1.3136          |
| 1.1705        | 423.0 | 5499 | 1.2579          |
| 1.1065        | 424.0 | 5512 | 1.2955          |
| 1.145         | 425.0 | 5525 | 1.2970          |
| 1.1538        | 426.0 | 5538 | 1.3030          |
| 1.1674        | 427.0 | 5551 | 1.3060          |
| 1.1283        | 428.0 | 5564 | 1.2325          |
| 1.1683        | 429.0 | 5577 | 1.3085          |
| 1.1598        | 430.0 | 5590 | 1.2469          |
| 1.1429        | 431.0 | 5603 | 1.2523          |
| 1.1552        | 432.0 | 5616 | 1.3124          |
| 1.1722        | 433.0 | 5629 | 1.2955          |
| 1.1329        | 434.0 | 5642 | 1.3249          |
| 1.1486        | 435.0 | 5655 | 1.3245          |
| 1.124         | 436.0 | 5668 | 1.4052          |
| 1.1092        | 437.0 | 5681 | 1.2399          |
| 1.135         | 438.0 | 5694 | 1.2788          |
| 1.1637        | 439.0 | 5707 | 1.2844          |
| 1.1712        | 440.0 | 5720 | 1.2531          |
| 1.1401        | 441.0 | 5733 | 1.2790          |
| 1.1195        | 442.0 | 5746 | 1.2876          |
| 1.1524        | 443.0 | 5759 | 1.2565          |
| 1.1292        | 444.0 | 5772 | 1.1492          |
| 1.1342        | 445.0 | 5785 | 1.3050          |
| 1.1628        | 446.0 | 5798 | 1.2911          |
| 1.1286        | 447.0 | 5811 | 1.3624          |
| 1.1193        | 448.0 | 5824 | 1.2382          |
| 1.1521        | 449.0 | 5837 | 1.2717          |
| 1.1128        | 450.0 | 5850 | 1.2865          |
| 1.1321        | 451.0 | 5863 | 1.2785          |
| 1.1707        | 452.0 | 5876 | 1.3514          |
| 1.1431        | 453.0 | 5889 | 1.3321          |
| 1.1413        | 454.0 | 5902 | 1.2886          |
| 1.0983        | 455.0 | 5915 | 1.3165          |
| 1.1202        | 456.0 | 5928 | 1.2375          |
| 1.1259        | 457.0 | 5941 | 1.2166          |
| 1.1353        | 458.0 | 5954 | 1.3579          |
| 1.1272        | 459.0 | 5967 | 1.2890          |
| 1.1411        | 460.0 | 5980 | 1.2397          |
| 1.115         | 461.0 | 5993 | 1.2803          |
| 1.14          | 462.0 | 6006 | 1.2439          |
| 1.11          | 463.0 | 6019 | 1.1894          |
| 1.1539        | 464.0 | 6032 | 1.2979          |
| 1.1052        | 465.0 | 6045 | 1.2281          |
| 1.1092        | 466.0 | 6058 | 1.2853          |
| 1.1229        | 467.0 | 6071 | 1.2988          |
| 1.1209        | 468.0 | 6084 | 1.3058          |
| 1.1147        | 469.0 | 6097 | 1.2705          |
| 1.1228        | 470.0 | 6110 | 1.2435          |
| 1.1124        | 471.0 | 6123 | 1.2188          |
| 1.0922        | 472.0 | 6136 | 1.2892          |
| 1.1228        | 473.0 | 6149 | 1.2250          |
| 1.1341        | 474.0 | 6162 | 1.2373          |
| 1.1295        | 475.0 | 6175 | 1.2126          |
| 1.1105        | 476.0 | 6188 | 1.3032          |
| 1.1223        | 477.0 | 6201 | 1.2190          |
| 1.1487        | 478.0 | 6214 | 1.2728          |
| 1.1288        | 479.0 | 6227 | 1.3258          |
| 1.1398        | 480.0 | 6240 | 1.2114          |
| 1.1127        | 481.0 | 6253 | 1.2695          |
| 1.135         | 482.0 | 6266 | 1.3376          |
| 1.106         | 483.0 | 6279 | 1.2860          |
| 1.0978        | 484.0 | 6292 | 1.3001          |
| 1.1254        | 485.0 | 6305 | 1.3180          |
| 1.1117        | 486.0 | 6318 | 1.3036          |
| 1.1249        | 487.0 | 6331 | 1.2380          |
| 1.1111        | 488.0 | 6344 | 1.3112          |
| 1.119         | 489.0 | 6357 | 1.2587          |
| 1.1203        | 490.0 | 6370 | 1.2867          |
| 1.1195        | 491.0 | 6383 | 1.3153          |
| 1.1304        | 492.0 | 6396 | 1.2762          |
| 1.1268        | 493.0 | 6409 | 1.2757          |
| 1.1478        | 494.0 | 6422 | 1.2493          |
| 1.1527        | 495.0 | 6435 | 1.2793          |
| 1.1252        | 496.0 | 6448 | 1.2435          |
| 1.1307        | 497.0 | 6461 | 1.3311          |
| 1.1163        | 498.0 | 6474 | 1.3016          |
| 1.099         | 499.0 | 6487 | 1.3532          |
| 1.1246        | 500.0 | 6500 | 1.2222          |