Post
1094
๐๐ฒ ๐๐ข๐ซ๐ฌ๐ญ ๐๐จ๐ฆ๐ฆ๐ฎ๐ง๐ข๐ญ๐ฒ ๐๐ซ๐ญ๐ข๐๐ฅ๐! ๐๐๐ฅ๐๐๐ญ๐ข๐ฏ๐ ๐๐ข๐ง๐-๐ญ๐ฎ๐ง๐ข๐ง๐ ๐ฐ๐ข๐ญ๐ก ๐๐ฉ๐๐๐ญ๐ซ๐ฎ๐ฆ ๐ฏ
Full walkthrough on how to get started with Spectrum and TRL for efficient fine-tuning.
๐ ๐ฃ https://huggingface.co/blog/anakin87/spectrum
---
Looking to fine-tune Language Models efficiently and save on computational resources?
One popular method is QLoRa, which quantizes the original model and trains low-rank adapters on top.
It's quite effective and uses less GPU than full fine-tuning.
However, QLoRa applies Low-Rank Adaptation uniformly across the entire model.
What if we could identify the most informative layers and only fine-tune those? ๐ค
This is exactly what Spectrum does! ๐
๐ฌ Spectrum analyzes the weight matrices for all layers in a Language Model and calculates a Signal to Noise Ratio (SNR) for each one.
(It uses Random Matrix Theory and Marchenko-Pastur distribution to distinguish signal from noise.)
๐ฏ Based on a chosen percentage (say, 25%), Spectrum selects the most informative layers of each type (mlp.down_proj, self_attn.o_proj, etc.).
You can then โ๏ธ freeze the rest of the model and focus your ๐๏ธโโ๏ธ training on the chosen layers.
๐ Results/Evaluation
- Spectrum is competitive with full fine-tuning and beats QLoRA on benchmarks.
- While QLoRA is more memory-efficient on a single GPU, Spectrum shines in distributed training setups.
- Great models trained with Spectrum: Dolphin models, Llama 3.1 Storm, numerous models by VAGO Solutions...
---
For a practical guide, check out the article above.
Full walkthrough on how to get started with Spectrum and TRL for efficient fine-tuning.
๐ ๐ฃ https://huggingface.co/blog/anakin87/spectrum
---
Looking to fine-tune Language Models efficiently and save on computational resources?
One popular method is QLoRa, which quantizes the original model and trains low-rank adapters on top.
It's quite effective and uses less GPU than full fine-tuning.
However, QLoRa applies Low-Rank Adaptation uniformly across the entire model.
What if we could identify the most informative layers and only fine-tune those? ๐ค
This is exactly what Spectrum does! ๐
๐ฌ Spectrum analyzes the weight matrices for all layers in a Language Model and calculates a Signal to Noise Ratio (SNR) for each one.
(It uses Random Matrix Theory and Marchenko-Pastur distribution to distinguish signal from noise.)
๐ฏ Based on a chosen percentage (say, 25%), Spectrum selects the most informative layers of each type (mlp.down_proj, self_attn.o_proj, etc.).
You can then โ๏ธ freeze the rest of the model and focus your ๐๏ธโโ๏ธ training on the chosen layers.
๐ Results/Evaluation
- Spectrum is competitive with full fine-tuning and beats QLoRA on benchmarks.
- While QLoRA is more memory-efficient on a single GPU, Spectrum shines in distributed training setups.
- Great models trained with Spectrum: Dolphin models, Llama 3.1 Storm, numerous models by VAGO Solutions...
---
For a practical guide, check out the article above.